Analyzing and solving problems of decision making with parametric fuzzy
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 14-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of solution of decision making problems presented as models with parameters in the form of LR fuzzy numbers is proposed. This methodic is based on using of $\alpha $-level representation of fuzzy numbers, their subsequent modification by a convex linear transformation of the boundaries of $\alpha $-intervals, preserving the basic characteristics of fuzziness, proposed algebra of modified fuzzy numbers and a convex linear combination of the boundaries of $\alpha$-change interval. Bounded growth of uncertainty in fuzzy information processing, preservation of natural interpretation of intermediate and final results of calculations and the possibility of algorithm realization in software environments working with real numbers are the advantages of the proposed method. The usage of the $\alpha$-level representation causes the problem of fuzzy solutions stability. We give the definition of stability for solutions in the form of a fuzzy point in $n$-dimensional space and in the form of a fuzzy function. For several kinds of problems we give a stability criteria, which is easily verified in practical calculations. We have examples of solving the problems with parametric fuzziness using the proposed method, confirming the validity of the results.
Keywords: the models with parametric fuzziness; LR-fuzzy numbers; $\alpha$-level representation; algebra of fuzzy numbers; stability of fuzzy solution.
@article{VYURU_2015_8_4_a1,
     author = {M. G. Matveev},
     title = {Analyzing and solving problems of decision making with parametric fuzzy},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {14--29},
     year = {2015},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a1/}
}
TY  - JOUR
AU  - M. G. Matveev
TI  - Analyzing and solving problems of decision making with parametric fuzzy
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 14
EP  - 29
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a1/
LA  - ru
ID  - VYURU_2015_8_4_a1
ER  - 
%0 Journal Article
%A M. G. Matveev
%T Analyzing and solving problems of decision making with parametric fuzzy
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 14-29
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a1/
%G ru
%F VYURU_2015_8_4_a1
M. G. Matveev. Analyzing and solving problems of decision making with parametric fuzzy. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 14-29. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a1/

[1] Cornelius T. Leondes (ed.), Fuzzy Theory Systems: Techniques and Applicatons, Academic Press, London, 1999, 1777 pp. | MR

[2] Bouchon-Meunier B., Foulloy L., Yager R. R. (eds.), Intelligent Systems for Information Processing: From Representation to Applications, Elsevier, Amsterdam, 2003, 488 pp.

[3] M. Hanss, Applied Fazzy Arithmetic: An Introduction with Engineering Applications, Springer, Netherlands, 2005, 256 pp.

[4] Averkin A. N., Batyrshin I. Z., Blishun A. F. etc., Fuzzy Sets in Management Models and Artificial Intelligence, Nauka, M., 1986, 312 pp.

[5] Borisov A. M., Krumberg O. A., Fedorov I. P., Decision-Making Based on Fuzzy Models: Examples of Use, Nauka, Riga, 1990, 184 pp.

[6] A. Piegat, Fuzzy Modelling and Control, Springer-Heidelberg, New York, 2001, 371 pp.

[7] S. P. Chen, Y. J. Hsueh, “A Simple Approach to Fuzzy Critical Path Analysis in Project Networks”, Applied Mathematical Modeling, 32 (2008), 1289–1297 | DOI | MR | Zbl

[8] S. S. Bekheet, A. Mohammed, H. A. Hefny, “An Enhanced Fuzzy Multi Criteria Decision Making Model with a proposed Polygon Fuzzy Number”, International Journal of Advanced Computer Science and Applications, 5:5 (2014), 118–121 | DOI

[9] Vorontsov Y. A., Matveev M. G., “Algebraic Operations with LR Fuzzy Numbers Using L Conversion”, Software Engineering, 2014, no. 8, 23–29 (in Russian)

[10] Vorontsov Y. A., Matveev M. G., “Arithmetic Operations on Two-Component Fuzzy Numbers”, Proceedings of Voronezh State University. Series: System Analysis and Information Technologies, 2014, no. 2, 75–82 (in Russian) | MR

[11] Ashmanov S. A., Linear Programming, Nauka, M., 1981, 340 pp.

[12] Agayan G. M., Ryutin A. A., Tikhonov A. N., “The Problem of Linear Programming with Approximate Data”, USSR Computational Mathematics and Mathematical Physics, 24:5 (1984), 14–19 | DOI | MR | Zbl