@article{VYURU_2015_8_4_a0,
author = {M. V. Bulatov and P. M. Lima and Thanh Do Tien},
title = {An integral method for the numerical solution of nonlinear singular boundary value problems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {5--13},
year = {2015},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a0/}
}
TY - JOUR AU - M. V. Bulatov AU - P. M. Lima AU - Thanh Do Tien TI - An integral method for the numerical solution of nonlinear singular boundary value problems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 5 EP - 13 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a0/ LA - en ID - VYURU_2015_8_4_a0 ER -
%0 Journal Article %A M. V. Bulatov %A P. M. Lima %A Thanh Do Tien %T An integral method for the numerical solution of nonlinear singular boundary value problems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 5-13 %V 8 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a0/ %G en %F VYURU_2015_8_4_a0
M. V. Bulatov; P. M. Lima; Thanh Do Tien. An integral method for the numerical solution of nonlinear singular boundary value problems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 4, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURU_2015_8_4_a0/
[1] Gurtin M. E., Polignone D., Vinals J., “Two-Phase Binary Fluids and Immiscible Fluids Described by an Order Parameter”, Mathematical Models and Methods in Applied Sciences, 6 (1996), 815–831 | DOI | MR | Zbl
[2] Dell'Isola F., Gouin H., Rotoli G., “Nucleation of Spherical Shell-Like Interfaces by Second Gradient Theory: Numerical Simulations”, European Journal of Mechanics–B/Fluids, 15 (1996), 545–568 | Zbl
[3] Gavrilyuk S. L., Shugrin S. M., “Media with Equations of State that Depend on Derivatives”, Journal of Applied Mechanics and Technical Physics, 37 (1996), 177–189 | DOI | MR | Zbl
[4] Lima P. M., Chemetov N. V., Konyukhova N. B., Sukov A. I., “Analytical-Numerical Investigation of Bubble-Type Solutions of Nonlinear Singular Problems”, Journal of Computational and Applied Mathematics, 189 (2006), 260–273 | DOI | MR | Zbl
[5] Kitzhofer G., Koch O., Lima P. M., Weinmüller E., “Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics”, Journal of Scientific Computing, 32 (2007), 411–424 | DOI | MR | Zbl
[6] Konyukhova N. B., Lima P. M., Morgado M. L., Soloviev M. B., “Bubbles and Droplets in Nonlinear Physics Models: Analysis and Numerical Simulation of Singular Nonlinear Boundary Value Problems”, Computational Mathematics and Mathematical Physics, 48:11 (2008), 2018–2058 | DOI | MR
[7] Derrick G., “Comments on Nonlinear Wave Equations as Models for Elementary Particles”, Journal of Mathematical Physics, 5 (1965), 1252–1254 | DOI | MR
[8] Gazzola F., Serrin J., Tang M., “Existence of Ground States and Free Boundary Problems for Quasilinear Elliptic Operators”, Advances in Differential Equations, 5 (2000), 1–30 | MR | Zbl
[9] Hastermann G., Lima P. M., Morgado M. L., Weinmüller E. B., “Density Profile Equation with p-Laplacian: Analysis and Numerical Simulation”, Applied Mathematics and Computation, 225 (2013), 550–561 | DOI | MR | Zbl
[10] Kulikov G. Yu., Lima P. M., Morgado M. L., “Analysis and Numerical Approximation of Singular Boundary Value Problems with the p-Laplacian in Fluid Mechanis”, Journal of Computational and Applied Mathematics, 262 (2014), 87–104 | DOI | MR | Zbl
[11] Weiss R., Anderssen R. S., “A Product Integration Method for a Class of Singular First Kind Volterra Equations”, Numerische Mathematik, 18 (1972), 442–456 | DOI | MR | Zbl
[12] Weiss R., “Product Integration for the Generalized Abel Equations”, Mathematics of Computation, 26 (1972), 177–186 | DOI | MR
[13] Brunner H., Collocation Methods for Volterra Integral and Related Functional Equations, University Press, Cambridge, 2004 | DOI | MR | Zbl
[14] Brunner H., Van Der Houven P. J., The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986 | MR | Zbl
[15] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | DOI | MR | Zbl
[16] Brunner H., “1896–1996: One Hundred Years of Volterra Integral Equations of the First Kind”, Applied Numerical Mathematics, 24 (1997), 83–93 | DOI | MR | Zbl