@article{VYURU_2015_8_3_a9,
author = {G. A. Sviridyuk and S. A. Zagrebina and A. S. Konkina},
title = {The {Oskolkov} equations on the geometric graphs as a mathematical model of the traffic flow},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {148--154},
year = {2015},
volume = {8},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/}
}
TY - JOUR AU - G. A. Sviridyuk AU - S. A. Zagrebina AU - A. S. Konkina TI - The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 148 EP - 154 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/ LA - ru ID - VYURU_2015_8_3_a9 ER -
%0 Journal Article %A G. A. Sviridyuk %A S. A. Zagrebina %A A. S. Konkina %T The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 148-154 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/ %G ru %F VYURU_2015_8_3_a9
G. A. Sviridyuk; S. A. Zagrebina; A. S. Konkina. The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 148-154. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/
[1] Kurzhanski A. B., “The Current Problems of the Dynamics and Control Theory, Motivation Theory and Computation. Road map”, Plenary lecture at the meeting General Plenary, XII Russian Conference on Control (Moscow, Russia IPU RAN, 16–19 june 2014) (in Russian)
[2] Gasnikov A. V., Klenov S. L., Nurminski E. A., Kholodov Ya. A. etc., Introduction to the Mathematical Modelling of Traffic Flows, MIPT, M., 2010, 362 pp. (in Russian)
[3] Oskolkov A. P., “Some Nonstationary Linear and Quasilinear Systems Occurring in the Investigation of the Motion of Viscous Fluids”, Journal of Soviet Mathematics, 10:2 (1978), 299–335 | DOI | Zbl
[4] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Differential Equations on Geometrical Graphs, FizMatLit, M., 2004 (in Russian)
[5] Sviridyuk G. A., Shemetova V. V., “The Phase Space of a Nonclassical Model”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:11 (2005), 44–49 | MR
[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl
[7] S. A. Zagrebina, E. A. Soldatova, G. A. Sviridyuk, “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Semigroups of Operators — Theory and Applications, International Conference (Bedlewo, Poland, Oktober 2013), Springer Proceedings in Mathematics Statistics, 113, Springer International Publishing Switzerland, Heidelberg–New York–Dordrecht–London, 2015, 317–325 | DOI | MR | Zbl
[8] Manakova N. A., Optimal Control Problem for the Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 88 pp. (in Russian)
[9] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian)
[10] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian)
[11] Keller A. V., Numerical Reseach of Optimal Control Problem for Leontieff Type Models, The Dissertation for Scientific Degree of the Doctor of Physical and Mathematical Sciences, South Ural State University, Chelyabinsk, 2011, 252 pp. (in Russian)
[12] Shestakov A. L., Keller A. V., Nazarova E. I., “The Numerical Solution of the Optimal Demension Problem”, Automation and Remote Control, 73:1 (2011), 97–104 | DOI | MR
[13] Shestakov A. L., Sviridyuk G. A., Butakova M. D., “The Mathematical Modelling of the Production of Construction Mixtures with Prescribed Properties”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 8:1 (2015), 100–110 | Zbl
[14] Oskolkov A. P., “Nonlocal Problems for Some class Nonlinear Operator Equations Arising in the Theory Sobolev Type Equations”, Journal of Soviet Mathematics, 64:1 (1993), 724–736 | DOI | MR | Zbl
[15] A. Favini, A. Lorenzi, H. Tanabe, “First Order Regular and Degenerate Identification Differential Problems”, Abstract and Applied Analysis, 2015, 393624, 42 pp. | MR