The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 148-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Currently there arose a necessity of creation of adequate mathematical model describing the flow of traffic. The mathematical traffic control theory is now actively developing in the works of A.B. Kurzhanski and his school, where the transport flow is considered to be similar to the flow of an incompressible fluid, and consequently the hydrodynamic model, for example based on the system of Navier – Stokes Equations, is used. In addition to the obvious properties of traffic flow covered previously, such as viscosity and incompressibility, the authors of this article propose to take into consideration its elasticity. Indeed, when you turn on a forbidding signal of a traffic light vehicles do not stop instantly and smoothly reduce their speed up to stop accumulating before the stop line. Similarly, if you turn on an allowing signal of the traffic light vehicles do not start instantaneously and simultaneously, they start driving one after another, gradually raising up the speed. Thus the transport flow has an effect of retardation, which is typical for viscoelastic incompressible fluids described by a system of Oskolkov equations. The first part of the article substantiates a linear mathematical model, i.e. the model without convective terms in the Oskolkov equations. In the context of the model this means that transposition of vehicles can be neglected. In the second part the model is investigated on a qualitative level, i.e. we formulate the existence of a unique solution theorem for the stated problem and provide an outline of its proof.
Keywords: Oskolkov equation; geometric graph; Cauchy problem; traffic flows.
@article{VYURU_2015_8_3_a9,
     author = {G. A. Sviridyuk and S. A. Zagrebina and A. S. Konkina},
     title = {The {Oskolkov} equations on the geometric graphs as a mathematical model of the traffic flow},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {148--154},
     year = {2015},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - S. A. Zagrebina
AU  - A. S. Konkina
TI  - The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 148
EP  - 154
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/
LA  - ru
ID  - VYURU_2015_8_3_a9
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A S. A. Zagrebina
%A A. S. Konkina
%T The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 148-154
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/
%G ru
%F VYURU_2015_8_3_a9
G. A. Sviridyuk; S. A. Zagrebina; A. S. Konkina. The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 148-154. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a9/

[1] Kurzhanski A. B., “The Current Problems of the Dynamics and Control Theory, Motivation Theory and Computation. Road map”, Plenary lecture at the meeting General Plenary, XII Russian Conference on Control (Moscow, Russia IPU RAN, 16–19 june 2014) (in Russian)

[2] Gasnikov A. V., Klenov S. L., Nurminski E. A., Kholodov Ya. A. etc., Introduction to the Mathematical Modelling of Traffic Flows, MIPT, M., 2010, 362 pp. (in Russian)

[3] Oskolkov A. P., “Some Nonstationary Linear and Quasilinear Systems Occurring in the Investigation of the Motion of Viscous Fluids”, Journal of Soviet Mathematics, 10:2 (1978), 299–335 | DOI | Zbl

[4] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Differential Equations on Geometrical Graphs, FizMatLit, M., 2004 (in Russian)

[5] Sviridyuk G. A., Shemetova V. V., “The Phase Space of a Nonclassical Model”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:11 (2005), 44–49 | MR

[6] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[7] S. A. Zagrebina, E. A. Soldatova, G. A. Sviridyuk, “The Stochastic Linear Oskolkov Model of the Oil Transportation by the Pipeline”, Semigroups of Operators — Theory and Applications, International Conference (Bedlewo, Poland, Oktober 2013), Springer Proceedings in Mathematics Statistics, 113, Springer International Publishing Switzerland, Heidelberg–New York–Dordrecht–London, 2015, 317–325 | DOI | MR | Zbl

[8] Manakova N. A., Optimal Control Problem for the Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 88 pp. (in Russian)

[9] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian)

[10] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian)

[11] Keller A. V., Numerical Reseach of Optimal Control Problem for Leontieff Type Models, The Dissertation for Scientific Degree of the Doctor of Physical and Mathematical Sciences, South Ural State University, Chelyabinsk, 2011, 252 pp. (in Russian)

[12] Shestakov A. L., Keller A. V., Nazarova E. I., “The Numerical Solution of the Optimal Demension Problem”, Automation and Remote Control, 73:1 (2011), 97–104 | DOI | MR

[13] Shestakov A. L., Sviridyuk G. A., Butakova M. D., “The Mathematical Modelling of the Production of Construction Mixtures with Prescribed Properties”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 8:1 (2015), 100–110 | Zbl

[14] Oskolkov A. P., “Nonlocal Problems for Some class Nonlinear Operator Equations Arising in the Theory Sobolev Type Equations”, Journal of Soviet Mathematics, 64:1 (1993), 724–736 | DOI | MR | Zbl

[15] A. Favini, A. Lorenzi, H. Tanabe, “First Order Regular and Degenerate Identification Differential Problems”, Abstract and Applied Analysis, 2015, 393624, 42 pp. | MR