Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic Dirichlet-to-Neumann map
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 78-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine the stability issue in the inverse problem of determining a scalar potential appearing in the stationary Schrödinger equation in a bounded domain, from a partial elliptic Dirichlet-to-Neumann map. Namely, the Dirichlet data is imposed on the shadowed face of the boundary of the domain and the Neumann data is measured on its illuminated face. We establish a $\log\log$ stability estimate for the $L^2$-norm (resp. the $H^{-1}$-norm) of $H^t$, for $t>0$, and bounded (resp. $L^2$) potentials.
Keywords:
inverse problem; stability; Schrödinger equation.
@article{VYURU_2015_8_3_a4,
author = {M. Choulli and Y. Kian and E. Soccorsi},
title = {Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic {Dirichlet-to-Neumann} map},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {78--94},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/}
}
TY - JOUR AU - M. Choulli AU - Y. Kian AU - E. Soccorsi TI - Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic Dirichlet-to-Neumann map JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 78 EP - 94 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/ LA - en ID - VYURU_2015_8_3_a4 ER -
%0 Journal Article %A M. Choulli %A Y. Kian %A E. Soccorsi %T Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic Dirichlet-to-Neumann map %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 78-94 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/ %G en %F VYURU_2015_8_3_a4
M. Choulli; Y. Kian; E. Soccorsi. Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic Dirichlet-to-Neumann map. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 78-94. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/