@article{VYURU_2015_8_3_a4,
author = {M. Choulli and Y. Kian and E. Soccorsi},
title = {Double logarithmic stability in the identification of a scalar potential by~a~partial elliptic {Dirichlet-to-Neumann} map},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {78--94},
year = {2015},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/}
}
TY - JOUR AU - M. Choulli AU - Y. Kian AU - E. Soccorsi TI - Double logarithmic stability in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 78 EP - 94 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/ LA - en ID - VYURU_2015_8_3_a4 ER -
%0 Journal Article %A M. Choulli %A Y. Kian %A E. Soccorsi %T Double logarithmic stability in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 78-94 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/ %G en %F VYURU_2015_8_3_a4
M. Choulli; Y. Kian; E. Soccorsi. Double logarithmic stability in the identification of a scalar potential by a partial elliptic Dirichlet-to-Neumann map. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 78-94. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a4/
[1] Lions J.-L., Magenes E., Non-Homogenuous Boundary Value Problems and Applications, v. I, Springer, Berlin, 1972
[2] Calderón A., “On an Inverse Boundary Problem”, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeíro, 1980, 65–73 | MR
[3] Sylvester J., Uhlmann G., “A Global Uniqueness Theorem for an Inverse Boundary Value Problem”, Ann. of Math., 125 (1987), 153–169 | DOI | MR | Zbl
[4] Alessandrini G., “Stable Determination of Conductivity by Boundary Measurements”, Appl. Anal., 27 (1988), 153–172 | DOI | MR | Zbl
[5] Mandache N., “Exponential Instability in an Inverse Problem for the Schrodinger Equation”, Inverse Problems, 17 (2001), 1435–1444 | DOI | MR | Zbl
[6] Bukhgeim A. L., Uhlmann G., “Recovering a Potential from Partial Cauchy Data”, Commun. Part. Diff. Equat., 27 (2002), 653–658 | DOI | MR
[7] Kenig C. E., Sjöstrand J., Uhlmann G., “The Calderòn Problem with Partial Data”, Ann. of Math., 165 (2007), 567–791 | DOI | MR
[8] Nachman A., Street B., “Reconstruction in the Calderòn Problem with Partial Data”, Commun. Part. Diff. Equat., 35 (2010), 375–390 | DOI | MR | Zbl
[9] Heck H., Wang J.-N., “Stability Estimate for the Inverse Boundary Value Problem by Partial Cauchy Data”, Inv. Probl., 22 (2006), 1787–1797 | DOI | MR
[10] Caro P., Dos Santos Ferreira D., Ruiz A., Stability Estimates for the Calderón Problem with Partial Data, arXiv: 1405.1217
[11] Caro P., Dos Santos Ferreira D., Ruiz A., Stability Estimates for the Radon Transform with Restricted Data and Applications, arXiv: 1211.1887v2
[12] Apraiz J., Escauriaza L., Wang G., Zhang C., Observability Inequalities and Measurable Sets, arXiv: 1002.4876 | MR
[13] Alessandrini G., Gaburro R., “The Local Calderon Problem and the Determination at the Boundary of the Conductivity”, Commun. Partial Differ. Equat., 34:8 (2009), 918–936 | DOI | MR | Zbl
[14] Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, v. II, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl