@article{VYURU_2015_8_3_a2,
author = {M. Calanchi and B. Ruf},
title = {Weighted {Trudinger{\textendash}Moser} inequalities and applications},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {42--55},
year = {2015},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a2/}
}
TY - JOUR AU - M. Calanchi AU - B. Ruf TI - Weighted Trudinger–Moser inequalities and applications JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 42 EP - 55 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a2/ LA - en ID - VYURU_2015_8_3_a2 ER -
%0 Journal Article %A M. Calanchi %A B. Ruf %T Weighted Trudinger–Moser inequalities and applications %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 42-55 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a2/ %G en %F VYURU_2015_8_3_a2
M. Calanchi; B. Ruf. Weighted Trudinger–Moser inequalities and applications. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 42-55. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a2/
[1] Yudovich V. I., “Some Estimates Connected with Integral Operators and with Solutions of Elliptic Equations”, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808 | MR | Zbl
[2] Peetre J., “Espaces d' interpolation et théorème de Soboleff”, Ann. Inst. Fourier, 16 (1966), 279–317 | DOI | MR | Zbl
[3] Pohozaev S. I., “The Sobolev Embedding in the Case $pl = n$”, Proc. of the Technical Scientific Conference on Advances of Scientific Research, Mathematics Section, Moskov. Energet. Inst., M., 1964–1965, 158–170
[4] Trudinger N. S., “On Imbeddings into Orlicz Spaces and Some Applications”, Journal of Applied Mathematics and Mechanics, 17 (1967), 473–483 | DOI | MR | Zbl
[5] Moser J., “A Sharp Form of an Inequality by N. Trudinger”, Indiana University Mathematics Journal, 20 (1970/71), 1077–1092 | DOI | MR
[6] Liouville J., “Sur l' equation aux derivées partielles”, Journal de Mathématiques Pures et Appliquées, 18 (1853), 71–72
[7] Caglioti E., Lions P. L., Marchioro C., Pulvirenti M., “A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description”, Communications in Mathematical Physics, 143:3 (1992), 501–525 | DOI | MR | Zbl
[8] Caglioti E., Lions P. L., Marchioro C., Pulvirenti M., “A Special Class of Stationary Flows for Two-Dimensional Euler Equations: a Statistical Mechanics Description, II”, Communications in Mathematical Physics, 174:2 (1995), 229–260 | DOI | MR | Zbl
[9] Chanillo S., Kiessling M., “Rotational Symmetry of Solutions of Some Nonlinear Problems in Statistical Mechanics and in Geometry”, Communications in Mathematical Physics, 160:2 (1994), 217–238 | DOI | MR | Zbl
[10] Kiessling M. K.-H., “Statistical Mechanics of Classical Particles with Logarithmic Interactions”, Communications on Pure and Applied Mathematics, 46 (1993), 27–56 | DOI | MR | Zbl
[11] Tarantello G., “Multiple Condensate Solutions for the Chern–Simons–Higgs Theory”, Journal of Mathematical Physics, 37 (1996), 3769–3796 | DOI | MR | Zbl
[12] Tarantello G., “Analytical Aspects of Liouville-Type Equations with Singular Sources”, Handbook of Differential Equations, eds. M. Chipot, P. Quittner, Elsevier, North Holland, 2004, 491–592 | MR | Zbl
[13] Li Y. Y., “Harnack Type Inequality: the Method of Moving Planes”, Communications in Mathematical Physics, 200 (1999), 421–444 | DOI | MR | Zbl
[14] Chen C. C., Lin C. S., “Mean Field Equations of Liouville Type with Singular Data: Sharper Estimates”, Discrete and Continuous Dynamic Systems, 28:3 (2010), 123–127 | MR
[15] Calanchi M., Terraneo E., “Non-radial Maximizers for Functionals with Exponential Nonlinearity in $\mathbb R^2$”, Advanced Nonlinear Studies, 5 (2005), 337–350 | DOI | MR | Zbl
[16] Adimurthi, Sandeep K., “A Singular Moser–Trudinger Embedding and Its Applications”, Nonlinear Differential Equations and Applications, 13:5 (2007), 585–603 | DOI | MR | Zbl
[17] Calanchi M., Ruf B., “On a Trudinger–Moser Type Inequality with Logarithmic Weights”, Journal of Differential Equations, 258:6 (2015), 1967–1989 | DOI | MR | Zbl
[18] Calanchi M., “Some Weighted Inequalitie of Trudinger–Moser Type in Progress”, Nonlinear Differential Equations and Applications, 85, Birkhauser, 2014, 163–174 | MR | Zbl
[19] Calanchi M., Ruf B., “Trudinger–Moser Type Inequalities with Logarithmic Weights in Dimension N”, Nonlinear Anal., 121 (2015), 403–411 | DOI | MR | Zbl
[20] Kufner A., Weighted Sobolev Spaces, John Wiley Sons Ltd., 1985 | MR | Zbl
[21] Leckband M. A., “An Integral Inequality with Applications”, Transactions of the American Mathematical Society, 283:1 (1984), 157–168 | DOI | MR | Zbl
[22] de Figueiredo G., Miyagaki O. H., Ruf B., “Elliptic Equations in ${\mathbb R}^2$ with Nonlinearities in the Critical Growth Range”, Calc. Var. Partial Differential Equations, 3:2 (1995), 139–153 | DOI | MR | Zbl