Mathematical models and optimal control of the filtration and deformation processes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 5-24
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents a review author's works on study of optimal control problems for semilinear Sobolev type models with $s$-monotone and $p$-coercive operators. Theorems of existence and uniqueness of weak generalized solution to the Cauchy or the Showalter–Sidorov problem for a class of degenerate non-classical models of mathematical physics are stated. The theory is based on the phase space and the Galerkin–Petrov methods. The developed scheme of a numerical method allows one to find an approximate solution to the Cauchy or Showalter–Sidorov problems for considered models. An abstract scheme for study of the optimal control problem for this class of models is constructed. On the basis of abstract results the existence of optimal control of processes of filtration and deformation are obtained. The necessary conditions for optimal control are provided.
Keywords: Sobolev type equations; optimal control; phase space method; Galerkin–Petrov method.
@article{VYURU_2015_8_3_a0,
     author = {N. A. Manakova},
     title = {Mathematical models and optimal control of the filtration and deformation processes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--24},
     year = {2015},
     volume = {8},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a0/}
}
TY  - JOUR
AU  - N. A. Manakova
TI  - Mathematical models and optimal control of the filtration and deformation processes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 5
EP  - 24
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a0/
LA  - ru
ID  - VYURU_2015_8_3_a0
ER  - 
%0 Journal Article
%A N. A. Manakova
%T Mathematical models and optimal control of the filtration and deformation processes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 5-24
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a0/
%G ru
%F VYURU_2015_8_3_a0
N. A. Manakova. Mathematical models and optimal control of the filtration and deformation processes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 3, pp. 5-24. http://geodesic.mathdoc.fr/item/VYURU_2015_8_3_a0/

[1] Oskolkov A. P., “Initial-Boundary Value Problems for Equations of Motion Nonlinear Viscoelastic Fluids”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 147 (1985), 110–119 (In Russian) | MR | Zbl

[2] Amfilokhiev V. B., Voytkunskiy Ya. I., Mazaeva N. P., “The Flow of Polymer Solutions in the Presence of Convective Accelerations”, Trudy Leninigradskogo korablestroitel'nogo instituta, 96 (1975), 3–9 (In Russian)

[3] Sviridyuk G. A., Manakova N. A., “Phase Space of the Cauchy–Dirichlet Problem for the Oskolkov Equation of Nonlinear Filtration”, Russian Mathematics, 47:9 (2003), 33–38 | MR | Zbl

[4] Dzektser E. S., “The Generalization of the Equations of Motion of Groundwater”, Dokl. Akad. Nauk SSSR, 1972, no. 5, 1031–1033 (In Russian) | Zbl

[5] Sviridyuk G. A., Semenova I. N., “Solvability of an Inhomogeneous Problem for the Generalized Boussinesq Filtration Equations”, Differential Equations, 24:9 (1988), 1065–1069 | MR | Zbl

[6] N. J. Hoff, “Creep Buckling”, Aeron., 7:1 (1956), 1–20

[7] Sviridyuk G. A., Kazak V. O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:1–2 (2002), 262–266 | DOI | DOI | MR | Zbl

[8] Sviridyuk G. A., Shemetova V. V., “Hoff Equations on Graphs”, Differential Equations, 42:1 (2006), 139–145 | DOI | MR | Zbl

[9] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest Order Derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003 | MR | MR | Zbl

[10] Oskolkov A. P., “Nonlocal Problems for One Class of Nonlinear Operator Equations that Arise in the Theory of Sobolev Type Equations”, Journal of Mathematical Sciences, 64:1 (1993), 724–736 | MR | Zbl

[11] G. V. Demidenko, “$L_p$-Theory of Boundary Value Problems for Sobolev Type Equaitons”, Partial Diff. Equations, Banach Center Publications, 27, 1992, 101–109 | MR | Zbl

[12] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 548 pp. | MR | Zbl

[13] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | MR | Zbl

[14] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear the Sobolev Type Equations, Fizmatlit, M., 2007, 736 pp.

[15] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian) | MR

[16] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. (in Russian) | MR

[17] J. H. A. Lightbourne, “A Partial Functional Differential Equation of Sobolev Type”, J. Math. Anal. Appl., 93:2 (1983), 328–337 | DOI | MR | Zbl

[18] R. E. Showalter, “The Sobolev Equation”, Applicable Analysis, 5:1 (1975), 15–22 ; 5:2, 81–89 | DOI | MR | Zbl | DOI | MR

[19] Sviridyuk G. A., “The Manifold of Solutions of an Operator Singular Pseudoparabolic Equation”, Dokl. Akad. Nauk SSSR, 289:6 (1986), 1315–1318 (In Russian) | MR

[20] Sviridyuk G. A., Sukacheva T. G., “The Cauchy Problem for a Class of Semilinear Equations of Sobolev Type”, Siberian Math. J., 1991, no. 5, 794–802 | DOI | MR | Zbl

[21] A. Favini, A. Lorenzi, H. Tanabe, “First Order Regular and Degenerate Identification Differential Problems”, Abstract and Applied Analysis, 2015, 393624, 42 pp. | MR

[22] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev-Type Equations”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 104–125 (In Russian) | MR | Zbl

[23] Zagrebina S. A., “The Initial-Finite Problems for Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 5–24 (In Russian) | Zbl

[24] Sviridyuk G. A., “Optimal Control of Sobolev Type Linear Equations with Relativity $p$-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl

[25] Fedorov V. E., Plekhanova M. V., “Optimal Control of Sobolev Type Linear Equations”, Differential Equations, 40:11 (2004), 1627–1637 | DOI | MR | Zbl

[26] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:2 (2013), 220–230 | DOI | DOI | MR | Zbl

[27] Keller A. V., “The Leontief Type Systems: Classes of Problems with the Showalter–Sidorov Intial Condition and Numerical Solving”, The Bulletin of Irkutsk State University. Series: Mathematics, 2010, no. 2, 30–43 (In Russian) | Zbl

[28] Keller A. V., Sagadeeva M. A., “The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev Type”, Belgorod State University Scientific Bulletin. Mathematics, Physics, 32:19 (2013), 57–66 (In Russian)

[29] Shestakov A. L., Sviridyuk G. A., “Optimal Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 17(234):8 (2011), 70–75 (In Russian) | MR | Zbl

[30] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[31] Zamyshlyaeva A. A., Tsyplenkova O. N., “Optimal Control of Solutions of the Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Love Equation”, Differential Equations, 49:11 (2013), 1356–1365 | DOI | MR | Zbl

[32] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie Verlag, Berlin, 1974 | MR | MR | Zbl

[33] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, Series in Nonlinear Analisys and Applications, 15, De Gruyter, 2011 | DOI | MR | Zbl

[34] Lions J.-L., Quelques mérthodes de reśolution des problémes aux limites non linéaires, Dunod, Paris, 1968 | MR | MR

[35] Lions J.-L., Contrôle optimal de systémes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968 | MR | MR

[36] Sviridyuk G. A., Manakova N. A., “An Optimal Control Problem for the Hoff Equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253 | DOI | MR

[37] Manakova N. A., Optimal Control Problem for the Semilinear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 88 pp. (in Russian) | MR

[38] Manakova N. A., “Optimal Control Problem for the Oskolkov Nonlinear Filtration Equation”, Differential Equations, 43:9 (2007), 1213–1221 | DOI | MR | Zbl

[39] Sviridyuk G. A., Manakova N. A., “Optimal Control Problem for the Generalized Boussinesq Filtration Equation”, Bulletin of Magnitogorsk State University. Series: Mathematics, 2005, no. 8, 113–122 (In Russian)

[40] Bayazitova A. A., “The Sturm–Liouville Problem on Geometric Graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16(192):5 (2010), 4–10 (In Russian) | Zbl

[41] N. A. Manakova, “An Optimal Control to Solutions of the Showalter–Sidorov Problem for the Hoff Model of the Geometrical Graph”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 26–33 | MR | Zbl