Some generalizations of Shannon's theory of perfect ciphers
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 111-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

K. Shannon in the 1940s introduced the concept of a perfect cipher, which provides the best protection of plaintexts. Perfect secrecy means that a cryptanalyst can obtain no information about the plaintext by observing the ciphertext. It is well known that the Vernam cipher with equiprobable gamma is a perfect cipher but it is not imitation resistant because it uses equipotent alphabets for plaintexts and ciphertexts. Also in this cipher should be used equiprobable key sequences that are not always reached. In this review paper discusses the problems of constructing perfect and $(k|y)$-perfect ciphers for a given set of parameters. We give necessary and sufficient conditions for these ciphers. We construct perfect and $(k|y)$-perfect substitution ciphers with unlimited key and imitation resistant perfect ciphers. We study the case when the random generator of key sequences does not necessarily have a uniform probability distribution.
Keywords: cipher; perfect cipher; imitation of message.
@article{VYURU_2015_8_1_a8,
     author = {S. M. Ratseev},
     title = {Some generalizations of {Shannon's} theory of perfect ciphers},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {111--127},
     year = {2015},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a8/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - Some generalizations of Shannon's theory of perfect ciphers
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 111
EP  - 127
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a8/
LA  - ru
ID  - VYURU_2015_8_1_a8
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T Some generalizations of Shannon's theory of perfect ciphers
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 111-127
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a8/
%G ru
%F VYURU_2015_8_1_a8
S. M. Ratseev. Some generalizations of Shannon's theory of perfect ciphers. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 111-127. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a8/

[1] Alferov A. P., Zubov A. Yu., Kuz'min A. S., Cheremushkin A. V., Foundations of Cryptography, Gelios ARV, M., 2005, 480 pp.

[2] Zubov A. Yu., Cryptographic Methods of Information Security. Perfect ciphers, Gelios ARV, M., 2005, 192 pp.

[3] Ratseev S. M., Cherevatenko O. I., “On Perfect Ciphers Based on Orthogonal Tables”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 7:2 (2014), 66–73 (in Russian) | MR | Zbl

[4] Ratseev S. M., “On Perfect Imitation Resistant Ciphers”, Applied Discrete Mathematics, 17:3 (2012), 41–47 (in Russian)

[5] Ratseev S. M., “On Perfect Imitation Resistant Ciphers with Unbounded Key”, Vestnik Samara Proposition University, 110:9/1 (2013), 45–50 (in Russian)

[6] Ratseev S. M., “On Construction of Perfect Ciphers”, Journal of Samara State Technical University. Ser. Physical and Mathematical Sciences, 34:1 (2014), 192–199 (in Russian) | DOI

[7] Ratseev S. M., “On Theoretically Perfect Ciphers”, Systems and Means of Informatics, 24:1 (2014), 61–72 (in Russian) | Zbl

[8] Holl M., Combinatorics, Blaisdell Publishing, Waltham, Massachusetts, 1967, 310 pp.