The mathematical modelling of the production of construction mixtures with prescribed properties
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 100-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for the mathematical modelling of the preparation of construction mixes with prescribed properties. The method rests on the optimal control theory for Leontieff-type systems. Leontieff-type equations originally arose as generalizations of the well-known input-output model of economics taking supplies into account. Then they were used with success in dynamical measurements, therefore giving rise to the theory of optimal measurements. In the introduction we describe the ideology of the proposed model. As an illustration, we use an example of preparing of simple concrete mixes. In the first section we model the production process of similar construction mixtures (for instance, concrete mixtures) depending on investments. As a result, we determine the price of a unit of the product. In the second section we lay the foundation for the forthcoming construction of numerical algorithms and software, as well as conduction of simulations. Apart from that, we explain the prescribed properties of construction mixes being optimal with respect to expenses.
Keywords: Leontieff-type system; production of construction mixes.
@article{VYURU_2015_8_1_a7,
     author = {A. L. Shestakov and G. A. Sviridyuk and M. D. Butakova},
     title = {The mathematical modelling of the production of construction mixtures with prescribed properties},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {100--110},
     year = {2015},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a7/}
}
TY  - JOUR
AU  - A. L. Shestakov
AU  - G. A. Sviridyuk
AU  - M. D. Butakova
TI  - The mathematical modelling of the production of construction mixtures with prescribed properties
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 100
EP  - 110
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a7/
LA  - en
ID  - VYURU_2015_8_1_a7
ER  - 
%0 Journal Article
%A A. L. Shestakov
%A G. A. Sviridyuk
%A M. D. Butakova
%T The mathematical modelling of the production of construction mixtures with prescribed properties
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 100-110
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a7/
%G en
%F VYURU_2015_8_1_a7
A. L. Shestakov; G. A. Sviridyuk; M. D. Butakova. The mathematical modelling of the production of construction mixtures with prescribed properties. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 100-110. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a7/

[1] Sviridyuk G. A., Brychev S. V., “Numerical Solution of Systems of Equations of Leontief Type”, Russian Mathematics (Izvestiya VUZ. Matematika), 47:8 (2003), 44–50 | MR | Zbl

[2] Brychev S. V., Study of Mathematical Models of Economics and Public Utilities in Small Towns, The Dissertation for Scientific Degree of the Kandidat of Physical and Mathematical Sciences, Chelyabinsk, 2002

[3] Sviridyuk G. A., Keller A. V., “On the Numerical Solution Convergence of Optimal Control Problems for Leontief Type System”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2, 24–33 (in Russian) | DOI

[4] Keller A. V., Nazarova E. I., “Optimal Measuring Problem: the Computation Solution, the Program Algorithm”, News of Irkutsk State University. Series: Mathematics, 4:3 (2011), 74–82 | Zbl

[5] Keller A. V., “Numerical Solution of the Optimal Control Problem for Degenerate Linear System of Equations with Showalter–Sidorov Initial Conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 27(127) (2008), 50–56 (in Russian) | Zbl

[6] Keller A. V., Numerical Reseach of Optimal Control Problem for Leontieff Type Models, The Dissertation for Scientific Degree of the Doctor of Physical and Mathematical Sciences, South Ural State University, Chelyabinsk, 2011, 252 pp. (in Russian)

[7] Shestakov A. L., “Dynamic Error Correction Transducer Linear Filter-Based Sensor Model”, Izvestiya VUZ. Priborostroenie, 34:4 (1991), 8–13 (in Russian) | MR

[8] Shestakov A. L., Sviridyuk G. A., “A new Approach to Measurement of Dynamically Perturbed Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 16(192) (2010), 116–120 (in Russian) | MR | Zbl

[9] A. L. Shestakov, A. V. Keller, G. A. Sviridyuk, “The Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–16 | Zbl

[10] A. Shestakov, M. Sagadeeva, G. Sviridyuk, “Reconstruction of a Dynamically Distorted Signal with Respect to the Measuring Transducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI

[11] R. E. Showalter, “The Sobolev Type Equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI | MR | Zbl | MR | Zbl

[12] Sviridyuk G. A., Keller A. V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Equations of Sobolev Type”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:5 (1997), 57–65 | MR | Zbl

[13] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl

[14] S. G. Pyatkov, Operator theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002 | DOI | MR | Zbl

[15] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002 | DOI | MR | Zbl

[16] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003 | MR | Zbl

[17] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | DOI | MR | Zbl

[18] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Walter de Gruyter GmbH Co.KG, Berlin, 2011 | MR

[19] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012 (in Russian) | MR

[20] Zagrebina S. A., Moskvicheva P. O., Stability in Hoff Models, LAMBERT Academic Publishing, Saarbrucken, 2012 (in Russian)

[21] Manakova N. A., Optimal Control Problem for the Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012 (in Russian) | MR

[22] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012 (in Russian) | MR

[23] Fedorov V. E., “Holomorphic Solution Semigroups for Sobolev-Type Equations in Locally Convex Spaces”, Sbornik: Mathematics, 195:8 (2004), 1205–1234 | DOI | DOI | MR | Zbl

[24] Sviridyuk G. A., Al Delfi D. K., “Theorem on Splitting Quasi-Banach Spaces”, Matematicheskie zametki SVFU, 20:2 (2013), 180–185 (in Russian) | Zbl

[25] Boyarintsev Yu. E., Methods of Solving Singular Systems of Ordinary Differential Equations, Nauka, Novosibirsk, 1988 | MR

[26] Boyarintsev Yu. E., Chistyakov V. F., Differential-Algebraic Equations. Solution Methods and Research, Nauka, Novosibirsk, 1998 | MR

[27] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as Phenomena of the Sobolev-Type Equations”, News of Irkutsk State University. Series: Mathematics, 3:1 (2010), 51–72 (in Russian) | MR | Zbl

[28] Gantmacher F. R., The Theory of Matrices, Chelsea Publishing Company, N.Y., 1959 | MR