On one Sobolev type mathematical model in quasi-Banach spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 137-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of Sobolev type equations experiences an epoch of blossoming. In this article the theory of higher order Sobolev type equations with relatively spectrally bounded operator pencils, previously developed in Banach spaces, is transferred to quasi-Banach spaces. We use already well proved for solving Sobolev type equations phase space method, consisting in reduction of singular equation to regular one defined on some subspace of initial space. The propagators and the phase space of complete higher order Sobolev type equations are constructed. Abstract results are illustrated by specific examples. The Boussinesq–Love equation in quasi-Banach space is considered as application.
Keywords: Sobolev type equations; quasi-Banach spaces; propagators; phase space.
@article{VYURU_2015_8_1_a11,
     author = {A. A. Zamyshlyaeva and H. M. Al Helli},
     title = {On one {Sobolev} type mathematical model in {quasi-Banach} spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {137--142},
     year = {2015},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - H. M. Al Helli
TI  - On one Sobolev type mathematical model in quasi-Banach spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 137
EP  - 142
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/
LA  - en
ID  - VYURU_2015_8_1_a11
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A H. M. Al Helli
%T On one Sobolev type mathematical model in quasi-Banach spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 137-142
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/
%G en
%F VYURU_2015_8_1_a11
A. A. Zamyshlyaeva; H. M. Al Helli. On one Sobolev type mathematical model in quasi-Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/

[1] R. E. Showalter, “The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI | MR | Zbl | MR | Zbl

[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | DOI | MR | Zbl

[3] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. | MR

[4] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[5] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Solutions of the Initial-finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | MR | Zbl | Zbl

[6] Zamyshlyaeva A. A., Tsyplenkova O. N., “Optimal Control of Solutions for Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Love equation”, Differential equations, 49:11 (2013), 1390–1398 | DOI | MR | Zbl

[7] Sviridyuk G. A., Keller A. V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Sobolev Type Equations”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:5 (1997), 57–65 | MR | Zbl

[8] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012 | MR

[9] Berg J., Löfström J., Interpolation Spaces. An Introduction, Berlin–Heidelberg–N.Y., 1976, 222 pp. | MR

[10] Sviridyuk G. A., Al Delfi D. K., “Splitting Theorem in Quasi-Sobolev spaces”, Matematicheskie zametki YaGU, 20:2 (2013), 180–185 (in Russian) | Zbl

[11] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, N.Y., 1944, 643 pp. | MR | Zbl