@article{VYURU_2015_8_1_a11,
author = {A. A. Zamyshlyaeva and H. M. Al Helli},
title = {On one {Sobolev} type mathematical model in {quasi-Banach} spaces},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {137--142},
year = {2015},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - H. M. Al Helli TI - On one Sobolev type mathematical model in quasi-Banach spaces JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 137 EP - 142 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/ LA - en ID - VYURU_2015_8_1_a11 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A H. M. Al Helli %T On one Sobolev type mathematical model in quasi-Banach spaces %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 137-142 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/ %G en %F VYURU_2015_8_1_a11
A. A. Zamyshlyaeva; H. M. Al Helli. On one Sobolev type mathematical model in quasi-Banach spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a11/
[1] R. E. Showalter, “The Sobolev type equations. I; II”, Appl. Anal., 5:1 (1975), 15–22 ; 2, 81–99 | DOI | MR | Zbl | MR | Zbl
[2] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | DOI | MR | Zbl
[3] Zamyshlyaeva A. A., Linear Sobolev Type Equations of High Order, Publ. Center of the South Ural State University, Chelyabinsk, 2012, 107 pp. | MR
[4] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[5] Manakova N. A., Dyl'kov A. G., “Optimal Control of the Solutions of the Initial-finish Problem for the Linear Hoff Model”, Mathematical Notes, 94:1–2 (2013), 220–230 | DOI | MR | Zbl | Zbl
[6] Zamyshlyaeva A. A., Tsyplenkova O. N., “Optimal Control of Solutions for Showalter–Sidorov–Dirichlet Problem for the Boussinesq–Love equation”, Differential equations, 49:11 (2013), 1390–1398 | DOI | MR | Zbl
[7] Sviridyuk G. A., Keller A. V., “Invariant Spaces and Dichotomies of Solutions of a Class of Linear Sobolev Type Equations”, Russian Mathematics (Izvestiya VUZ. Matematika), 41:5 (1997), 57–65 | MR | Zbl
[8] Sagadeeva M. A., Dichotomy of Solutions of Linear Sobolev Type Equations, Publ. Center of the South Ural State University, Chelyabinsk, 2012 | MR
[9] Berg J., Löfström J., Interpolation Spaces. An Introduction, Berlin–Heidelberg–N.Y., 1976, 222 pp. | MR
[10] Sviridyuk G. A., Al Delfi D. K., “Splitting Theorem in Quasi-Sobolev spaces”, Matematicheskie zametki YaGU, 20:2 (2013), 180–185 (in Russian) | Zbl
[11] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, N.Y., 1944, 643 pp. | MR | Zbl