The multipoint initial-final value condition for the Navier–Stokes linear model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 132-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Navier–Stokes system models the dynamics of a viscous incompressible fluid. The problem of existence of solutions of the Cauchy–Dirichlet problem for this system is included in the list of the most serious problems of this century. In this paper it is proposed to consider the multipoint initial-final conditions instead of the Cauchy conditions. It should be noted that nowadays the study of solvabilityof initial-final value problems is a new and actively developing direction of the Sobolev type equations theory. The main result of the paper is the proof of unique solvability of the stated problem for the system of Navier–Stokes equations.
Keywords: relatively $p$-sectorial operators; the multipoint initial-final value condition; the Navier–Stokes linear model.
@article{VYURU_2015_8_1_a10,
     author = {S. A. Zagrebina and A. S. Konkina},
     title = {The multipoint initial-final value condition for the {Navier{\textendash}Stokes} linear model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {132--136},
     year = {2015},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/}
}
TY  - JOUR
AU  - S. A. Zagrebina
AU  - A. S. Konkina
TI  - The multipoint initial-final value condition for the Navier–Stokes linear model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2015
SP  - 132
EP  - 136
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/
LA  - en
ID  - VYURU_2015_8_1_a10
ER  - 
%0 Journal Article
%A S. A. Zagrebina
%A A. S. Konkina
%T The multipoint initial-final value condition for the Navier–Stokes linear model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2015
%P 132-136
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/
%G en
%F VYURU_2015_8_1_a10
S. A. Zagrebina; A. S. Konkina. The multipoint initial-final value condition for the Navier–Stokes linear model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 132-136. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/

[1] Zagrebina S. A., “The Initial-Finite Problems for Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 6:2 (2013), 5–24 | Zbl

[2] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publ., N.-Y.–London–Paris, 1969 | MR | Zbl

[3] Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Co., Amsterdam–N.-Y.–Oxford, 1979 | MR | Zbl

[4] Sviridyuk G. A., “On a Model of the Dynamics of a Weakly Compressible Viscoelastic Fluid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 | MR | Zbl

[5] Sviridyuk G. A., Kuznetsov G. A., “Relatively Strongly $p$-Sectorial Linear Operators”, Doklady Mathematics, 59:2 (1999), 298–300 | MR | Zbl

[6] Matveeva O. P., Sukacheva T. G., The Mathematical Model of a Viscoelastic Incompressible Fluid of Nonzero Order, Publishing Center of South Ural State University, Chelyabinsk, 2014 (in Russian)

[7] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | DOI | MR | Zbl

[8] Zagrebina S. A., “Multipoint Initial-Final Value Problem for the Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 7:3 (2014), 5–22 | Zbl