@article{VYURU_2015_8_1_a10,
author = {S. A. Zagrebina and A. S. Konkina},
title = {The multipoint initial-final value condition for the {Navier{\textendash}Stokes} linear model},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {132--136},
year = {2015},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/}
}
TY - JOUR AU - S. A. Zagrebina AU - A. S. Konkina TI - The multipoint initial-final value condition for the Navier–Stokes linear model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 132 EP - 136 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/ LA - en ID - VYURU_2015_8_1_a10 ER -
%0 Journal Article %A S. A. Zagrebina %A A. S. Konkina %T The multipoint initial-final value condition for the Navier–Stokes linear model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 132-136 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/ %G en %F VYURU_2015_8_1_a10
S. A. Zagrebina; A. S. Konkina. The multipoint initial-final value condition for the Navier–Stokes linear model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 132-136. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a10/
[1] Zagrebina S. A., “The Initial-Finite Problems for Nonclassical Models of Mathematical Physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 6:2 (2013), 5–24 | Zbl
[2] Ladyzhenskaya O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, Science Publ., N.-Y.–London–Paris, 1969 | MR | Zbl
[3] Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, North Holland Publ. Co., Amsterdam–N.-Y.–Oxford, 1979 | MR | Zbl
[4] Sviridyuk G. A., “On a Model of the Dynamics of a Weakly Compressible Viscoelastic Fluid”, Russian Mathematics (Izvestiya VUZ. Matematika), 38:1 (1994), 59–68 | MR | Zbl
[5] Sviridyuk G. A., Kuznetsov G. A., “Relatively Strongly $p$-Sectorial Linear Operators”, Doklady Mathematics, 59:2 (1999), 298–300 | MR | Zbl
[6] Matveeva O. P., Sukacheva T. G., The Mathematical Model of a Viscoelastic Incompressible Fluid of Nonzero Order, Publishing Center of South Ural State University, Chelyabinsk, 2014 (in Russian)
[7] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | DOI | MR | Zbl
[8] Zagrebina S. A., “Multipoint Initial-Final Value Problem for the Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 7:3 (2014), 5–22 | Zbl