@article{VYURU_2015_8_1_a1,
author = {A. G. Chentsov and Ya. V. Salii},
title = {A model of {\textquotedblleft}nonadditive{\textquotedblright} routing problem where the costs depend on the set of pending tasks},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {24--45},
year = {2015},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/}
}
TY - JOUR AU - A. G. Chentsov AU - Ya. V. Salii TI - A model of “nonadditive” routing problem where the costs depend on the set of pending tasks JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 24 EP - 45 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/ LA - en ID - VYURU_2015_8_1_a1 ER -
%0 Journal Article %A A. G. Chentsov %A Ya. V. Salii %T A model of “nonadditive” routing problem where the costs depend on the set of pending tasks %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 24-45 %V 8 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/ %G en %F VYURU_2015_8_1_a1
A. G. Chentsov; Ya. V. Salii. A model of “nonadditive” routing problem where the costs depend on the set of pending tasks. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 24-45. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/
[1] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San Francisco, 1979, 338 pp. | MR | MR | Zbl
[2] Melamed I. I., Sergeev S. I., Sigal I. Kh., “The Travelling Salesman Problem. Issues in Theory”, Automation and Remote Control, 50:9 (1989), 1147–1173 | MR | Zbl
[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “The Travelling Salesman Problem. Exact Methods”, Automation and Remote Control, 50:10 (1989), 1303–1324 | MR | Zbl
[4] Melamed I. I., Sergeev S. I., Sigal I. Kh., “The Travelling Salesman Problem. Approximate Algorithms”, Automation and Remote Control, 50:11 (1989), 1459–1479 | MR | Zbl
[5] Bellman R., “Dynamic Programming Treatment of the Travelling Salesman Problem”, Journal of the ACM, 9:1 (1962), 61–63 | DOI | MR | MR | Zbl
[6] Held M., Karp R., “A Dynamic Programming Approach to Sequencing Problems”, Journal of the Society for Industrial Applied Mathematics, 10:1 (1962), 196–210 | DOI | MR | Zbl
[7] Little J. D., Murty K. G., Sweeney D. W., Karel C., “An Algorithm for the Travelling Salesman Problem”, Operations Research, 11:6 (1963), 972–989 | DOI | Zbl
[8] Gutin G. Z., Punnen A. P. (eds.), The Travelling Salesman Problem and Its Variations, Combinatorial Optimization, 12, Kluwer Academic Publishers, Dordrecht, 2002, 830 pp. | MR
[9] Sergeev S. I., “Algorithms for the Minimax Problem of the Travelling Salesman. I: An Approach Based on Dynamic Programming”, Automation and Remote Control, 56:7 (1995), 1027–1032 | MR | Zbl
[10] Sesekin A. N., Chentsov A. A., Chentsov A. G., “Routing with an Abstract Function of Travel Cost Aggregation”, Proceedings of the IMM UB RAS, 16, no. 3, 2010, 240–264 (in Russian)
[11] Kuratowski K., Mostowski A., Set Theory, North-Holland, Amsterdam, 1967 | MR | MR
[12] Dieudonné J., Foundations of Modern Analysis, Academic Press, N.Y., 1960, 361 pp. | MR | Zbl
[13] Chentsov A. G., A Theoretical Treatment of Extremal Problems in Routing and Scheduling, Regular and Chaotic Dinamics, M.–Izhevsk, 2008, 240 pp.
[14] Chentsov A. A., Chentsov A. G., “Extremal Bottleneck Routing Problem with Constraints in the Form of Precedence Conditions”, Proceedings of the Steklov Institute of Mathematics, 263, no. 2, 2008, 23–36 | DOI | MR | Zbl
[15] Cheblokov I. B., Chentsov A. G., “About one Route Problem with Interior Tasks”, Journal of Udmurt University. Mathematics, Mechanics and Computer Science, 2012, no. 1, 96–119 (in Russian) | Zbl
[16] Chentsov A. G., “To Question of Routing of Works Complexes”, Journal of Udmurt University. Mathematics, Mechanics and Computer Science, 2013, no. 1, 59–82 (in Russian) | Zbl