A model of ``nonadditive'' routing problem where the costs depend on the set of pending tasks
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 24-45
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a generalization of the bottleneck (minimax) routing problem. The problem is to successively visit a number of megalopolises, complicated by precedence of constraints imposed on the order of megalopolises visited and the fact that the cost functions (of movement between megalopolises and of interior tasks) may explicitly depend on the list of tasks that are not completed at the present time. The process of movement is considered to be a sequence of steps, which include the exterior movement to the respective megalopolis and the following completion of (essentially interior) jobs connected with the megalopolis. The quality of the whole process is represented by the maximum cost of steps it consists of; the problem is to minimize the mentioned criterion (which yields a minimax problem, usually referred to as a “bottleneck problem”). Optimal solutions, in the form of a route-track pair (a track, or trajectory, conforms to a specific instance of a tour over the megalopolises, which are numbered in accordance with the route; the latter is defined by the transposition of indices), are constructed through a “nonstandard” variant of the dynamic programming method, which allows to avoid the process of constructing of all the values of the Bellman function whenever precedence constraints are present.
Keywords:
dynamic programming; route; precedence constraints; sequential ordering problem.
@article{VYURU_2015_8_1_a1,
author = {A. G. Chentsov and Ya. V. Salii},
title = {A model of ``nonadditive'' routing problem where the costs depend on the set of pending tasks},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {24--45},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/}
}
TY - JOUR AU - A. G. Chentsov AU - Ya. V. Salii TI - A model of ``nonadditive'' routing problem where the costs depend on the set of pending tasks JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2015 SP - 24 EP - 45 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/ LA - en ID - VYURU_2015_8_1_a1 ER -
%0 Journal Article %A A. G. Chentsov %A Ya. V. Salii %T A model of ``nonadditive'' routing problem where the costs depend on the set of pending tasks %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2015 %P 24-45 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/ %G en %F VYURU_2015_8_1_a1
A. G. Chentsov; Ya. V. Salii. A model of ``nonadditive'' routing problem where the costs depend on the set of pending tasks. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 8 (2015) no. 1, pp. 24-45. http://geodesic.mathdoc.fr/item/VYURU_2015_8_1_a1/