On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article deals with the question of uniqueness of a generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation, which describes nonequilibrium countercurrent capillary impregnation. The unknown function corresponds to effective saturation. The main equation of this model is nonlinear and implicit with respect to the time derivative, which makes it quite hard to study. In a suitable functional space, the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation reduces to the Cauchy problem for a quasilinear Sobolev-type equation. Sobolev-type equations constitute a large area of nonclassical equations of mathematical physics. The techniques used in this article originated in the theory of semilinear Sobolev-type equations. For the Cauchy problem we obtain a sufficient condition for the existence of a unique generalized solution. We establish the existence of a unique nonlocal generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Barenblatt–Gilman equation; quasilinear Sobolev-type equation; generalized solution.
                    
                    
                    
                  
                
                
                @article{VYURU_2014_7_4_a8,
     author = {E. A. Bogatyreva and I. N. Semenova},
     title = {On the uniqueness of a nonlocal solution in the {Barenblatt--Gilman} model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/}
}
                      
                      
                    TY - JOUR AU - E. A. Bogatyreva AU - I. N. Semenova TI - On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 113 EP - 119 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/ LA - en ID - VYURU_2014_7_4_a8 ER -
%0 Journal Article %A E. A. Bogatyreva %A I. N. Semenova %T On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 113-119 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/ %G en %F VYURU_2014_7_4_a8
E. A. Bogatyreva; I. N. Semenova. On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
