@article{VYURU_2014_7_4_a8,
author = {E. A. Bogatyreva and I. N. Semenova},
title = {On the uniqueness of a nonlocal solution in the {Barenblatt{\textendash}Gilman} model},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {113--119},
year = {2014},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/}
}
TY - JOUR AU - E. A. Bogatyreva AU - I. N. Semenova TI - On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 113 EP - 119 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/ LA - en ID - VYURU_2014_7_4_a8 ER -
%0 Journal Article %A E. A. Bogatyreva %A I. N. Semenova %T On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 113-119 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/ %G en %F VYURU_2014_7_4_a8
E. A. Bogatyreva; I. N. Semenova. On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
[1] Barenblatt G. I., Gilman A. A., “Mathematical Model of the Countercurrent Capillary Impregnation”, Journal of Engineering Physics and Thermophysics, 52:3 (1987), 456–461 (in Russian)
[2] Zagrebina S. A., Sagadeeva M. A., “The Generalized Showalter–Sidorov Problem for the Sobolev Type Equations with strongly $(L,p)$-radial operator”, Bulletin of the Magnitogorsk State University, 2006, no. 9, 17–27 (in Russian) | MR | Zbl
[3] Keller A. V., “The Leontief Type Systems: Classes of Problems with the Showalter–Sidorov Intial Condition and Numerical Solving”, The Bulletin of Irkutsk State University. Series: Mathematics, 2010, no. 2, 30–43 (in Russian) | Zbl
[4] Sviridyuk G. A., Zagrebina S. A., “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $P$-Sectorial Operators”, Differential Equations, 38:12 (2002), 1745–1752 | DOI | MR | Zbl
[5] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI | MR | Zbl
[6] Manakova N. A., Bogatyreva E. A., “Numerical Research of Processes in the Barenblatt–Gilman Model”, Bulletin of the Magnitogorsk State University, 2013, no. 15, 58–67 (in Russian)
[7] Manakova N. A., Bogatyreva E. A., “On a Solution of the Dirichlet–Cauchy Problem for the Barenblatt–Gilman Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 7 (2014), 52–60 (in Russian) | Zbl
[8] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev-Type Equations, Walter de Gruyter GmbH Co. KG, Berlin–N.-Y., 2011 | MR
[9] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967 (in Russian) | MR