On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the question of uniqueness of a generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation, which describes nonequilibrium countercurrent capillary impregnation. The unknown function corresponds to effective saturation. The main equation of this model is nonlinear and implicit with respect to the time derivative, which makes it quite hard to study. In a suitable functional space, the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation reduces to the Cauchy problem for a quasilinear Sobolev-type equation. Sobolev-type equations constitute a large area of nonclassical equations of mathematical physics. The techniques used in this article originated in the theory of semilinear Sobolev-type equations. For the Cauchy problem we obtain a sufficient condition for the existence of a unique generalized solution. We establish the existence of a unique nonlocal generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation.
Keywords: Barenblatt–Gilman equation; quasilinear Sobolev-type equation; generalized solution.
@article{VYURU_2014_7_4_a8,
     author = {E. A. Bogatyreva and I. N. Semenova},
     title = {On the uniqueness of a nonlocal solution in the {Barenblatt--Gilman} model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/}
}
TY  - JOUR
AU  - E. A. Bogatyreva
AU  - I. N. Semenova
TI  - On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 113
EP  - 119
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
LA  - en
ID  - VYURU_2014_7_4_a8
ER  - 
%0 Journal Article
%A E. A. Bogatyreva
%A I. N. Semenova
%T On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 113-119
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
%G en
%F VYURU_2014_7_4_a8
E. A. Bogatyreva; I. N. Semenova. On the uniqueness of a nonlocal solution in the Barenblatt--Gilman model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/