On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article deals with the question of uniqueness of a generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation, which describes nonequilibrium countercurrent capillary impregnation. The unknown function corresponds to effective saturation. The main equation of this model is nonlinear and implicit with respect to the time derivative, which makes it quite hard to study. In a suitable functional space, the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation reduces to the Cauchy problem for a quasilinear Sobolev-type equation. Sobolev-type equations constitute a large area of nonclassical equations of mathematical physics. The techniques used in this article originated in the theory of semilinear Sobolev-type equations. For the Cauchy problem we obtain a sufficient condition for the existence of a unique generalized solution. We establish the existence of a unique nonlocal generalized solution to the Dirichlet–Cauchy problem for the Barenblatt–Gilman equation.
Keywords: Barenblatt–Gilman equation; quasilinear Sobolev-type equation; generalized solution.
@article{VYURU_2014_7_4_a8,
     author = {E. A. Bogatyreva and I. N. Semenova},
     title = {On the uniqueness of a nonlocal solution in the {Barenblatt{\textendash}Gilman} model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {113--119},
     year = {2014},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/}
}
TY  - JOUR
AU  - E. A. Bogatyreva
AU  - I. N. Semenova
TI  - On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 113
EP  - 119
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
LA  - en
ID  - VYURU_2014_7_4_a8
ER  - 
%0 Journal Article
%A E. A. Bogatyreva
%A I. N. Semenova
%T On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 113-119
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/
%G en
%F VYURU_2014_7_4_a8
E. A. Bogatyreva; I. N. Semenova. On the uniqueness of a nonlocal solution in the Barenblatt–Gilman model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 113-119. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a8/

[1] Barenblatt G. I., Gilman A. A., “Mathematical Model of the Countercurrent Capillary Impregnation”, Journal of Engineering Physics and Thermophysics, 52:3 (1987), 456–461 (in Russian)

[2] Zagrebina S. A., Sagadeeva M. A., “The Generalized Showalter–Sidorov Problem for the Sobolev Type Equations with strongly $(L,p)$-radial operator”, Bulletin of the Magnitogorsk State University, 2006, no. 9, 17–27 (in Russian) | MR | Zbl

[3] Keller A. V., “The Leontief Type Systems: Classes of Problems with the Showalter–Sidorov Intial Condition and Numerical Solving”, The Bulletin of Irkutsk State University. Series: Mathematics, 2010, no. 2, 30–43 (in Russian) | Zbl

[4] Sviridyuk G. A., Zagrebina S. A., “Verigin's Problem for Linear Equations of the Sobolev Type with Relatively $P$-Sectorial Operators”, Differential Equations, 38:12 (2002), 1745–1752 | DOI | MR | Zbl

[5] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Spaces of a Class of Linear Higher-Order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | DOI | MR | Zbl

[6] Manakova N. A., Bogatyreva E. A., “Numerical Research of Processes in the Barenblatt–Gilman Model”, Bulletin of the Magnitogorsk State University, 2013, no. 15, 58–67 (in Russian)

[7] Manakova N. A., Bogatyreva E. A., “On a Solution of the Dirichlet–Cauchy Problem for the Barenblatt–Gilman Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 7 (2014), 52–60 (in Russian) | Zbl

[8] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev-Type Equations, Walter de Gruyter GmbH Co. KG, Berlin–N.-Y., 2011 | MR

[9] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka, M., 1967 (in Russian) | MR