Solving of a minimal realization problem in Maple
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 76-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the computer algebra system Maple, we have created a package MinimalRealization to solve the minimal realization problem for a discrete-time linear time-invariant system. The package enables to construct the minimal realization of a system starting with either a finite sequence of Markov parameters of a system, or a transfer function, or any non-minimal realization. It is designed as a user library and consists of 11 procedures: Approx EssPoly, ApproxNullSpace, Approxrank, ExactEssPoly, Frac tion al FactorizationG, FractionalFactorizationMP, MarkovParameters, MinimalityTest, Mini malRealizationG, MinimalRealizationMP, Realization2MinimalRealization. The realization algorithm is based on solving of sequential problems: (1) determination of indices and essential polynimials (procedures ExactEssPoly, ApproxEssPoly), (2) construction of a right fractional factorization of the transfer function (FractionalFactorizationG, FractionalFactorizationMP), (3) construction of the minimal realization by the given fractional factorization (Mini malRealizationG, Mini malRealizationMP, Realization2MinimalRealization). We can solve the problem both in the case of exact calculations (in rational arithmetic) and in the presence of rounding errors, or for input data which are disturbed by noise. In the latter case the problem is ill-posed because it requires finding the rank and the null space of a matrix. We use the singular value decomposition as the most accurate method for calculation of the numerical rank (Approxrank) and the numerical null space (ApproxNullSpace). Numerical experiments with the package MinimalRealization demonstrate good agreement between the exact and approximate solutions of the problem.
Keywords: discrete-time linear time-invariant systems; fractional factorization; mini mal realization; algorithms for solving of realization problem.
@article{VYURU_2014_7_4_a5,
     author = {V. M. Adukov and A. S. Fadeeva},
     title = {Solving of a minimal realization problem in {Maple}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {76--89},
     year = {2014},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a5/}
}
TY  - JOUR
AU  - V. M. Adukov
AU  - A. S. Fadeeva
TI  - Solving of a minimal realization problem in Maple
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 76
EP  - 89
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a5/
LA  - en
ID  - VYURU_2014_7_4_a5
ER  - 
%0 Journal Article
%A V. M. Adukov
%A A. S. Fadeeva
%T Solving of a minimal realization problem in Maple
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 76-89
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a5/
%G en
%F VYURU_2014_7_4_a5
V. M. Adukov; A. S. Fadeeva. Solving of a minimal realization problem in Maple. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 76-89. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a5/

[1] Adukov V. M., “On a Problem of Minimal Realization”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 6:3 (2013), 5–17 (in Russian) | Zbl

[2] Adukov V. M., “Generalized Inversion of Block Toeplitz Matrices”, Linear Algebra and Its Applications, 274 (1998), 85–124 | DOI | MR | Zbl

[3] De Schutter B., “Minimal State-Space Realization in Linear System Theory: An Overview”, Journal of Computational and Applied Mathematics, 121:1–2, Special Issue on Numerical Analysis in the 20th Century. Vol. I: Approximation Theory (2000), 331–354 | DOI | MR | Zbl

[4] Pushkov S. G., Krivoshapko S. Y., “On the Problem of Realization in the State-Space Model for Interval Dynamic Systems”, Computing Technologies, 9:1 (2004), 75–85 (in Russian) | Zbl

[5] Sinha N. K., “Minimal Realization of Transfer Function Matrices. A Comparative Study of Different Methods”, International Journal of Control, 22:5 (1975), 627–639 | DOI | Zbl

[6] Kailath T., Linear Systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980 | MR | Zbl

[7] Foster L. V., Davis T. A., “Algorithm 933: Reliable Calculation of Numerical Rank, Null Space Bases, Pseudoinverse Solutions, and Basic Solutions Using SuitesparseQR”, ACM Transactions on Mathematical Software (TOMS), 40:1 (2013), 7, 23 pp. | DOI | MR | Zbl

[8] Adukov V. M., “Fractional and Wiener-Hopf Factorizations”, Linear Algebra and Its Applications, 340:1–3 (2002), 199–213 | DOI | MR | Zbl

[9] Adukov V. M., “Generalized Inversion of Finite Rank Toeplitz and Hankel Operators with Rational Matrix Symbols”, Linear Algebra and Its Applications, 290 (1999), 119–134 | DOI | MR | Zbl

[10] Tether A. J., “Construction of Minimal Linear State-Variable Models from Finite Input-Output Data”, IEEE Transactions on Automatic Control, AC-15:4 (1970), 427–436 | DOI | MR