A linear model of the motion of a low-concentration suspension of monodisperse Stokes particles in a flat channel
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 65-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the convection-diffusion approach to the monodisperse low-concentration solid phase sedimentation in a suspension moving in a flat horizontal channel, we obtain a linear boundary value problem for a parabolic equation on the local concentration of particles. We impose boundary conditions of the third kind using the condition that the flux of particles on the wetted surface is proportional to their concentration at the wall. Integral transformations yield an analytical solution of the stated boundary value problem, which we use to find the relations to determine the thickness of sediment on the bottom and top walls of the channel. Simulations show that the kinetics of the solid phase settling from a flowing suspension, as well as the sediment formation rate and its distribution on the botton and top walls of the flat channel, substantially depend on the degree of mixing of the dispersion medium and the absorption capacity of wet surfaces. We establish that for walls with low absorption capacity a decrease in the mixing intensity reduces the rate of particle sedimentation on the walls, but increases it in the case of high absorption capacity.
Keywords: convection-diffusion equation; boundary value problem; Laplace transform; analytical solution; sediment thickness; sedimentation; degree of mixing; wall absorption capacity.
@article{VYURU_2014_7_4_a4,
     author = {V. I. Ryazhskih and A. A. Boger and A. V. Ryazhskih},
     title = {A linear model of the motion of a low-concentration suspension of~monodisperse {Stokes} particles in a flat channel},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {65--75},
     year = {2014},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a4/}
}
TY  - JOUR
AU  - V. I. Ryazhskih
AU  - A. A. Boger
AU  - A. V. Ryazhskih
TI  - A linear model of the motion of a low-concentration suspension of monodisperse Stokes particles in a flat channel
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 65
EP  - 75
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a4/
LA  - ru
ID  - VYURU_2014_7_4_a4
ER  - 
%0 Journal Article
%A V. I. Ryazhskih
%A A. A. Boger
%A A. V. Ryazhskih
%T A linear model of the motion of a low-concentration suspension of monodisperse Stokes particles in a flat channel
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 65-75
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a4/
%G ru
%F VYURU_2014_7_4_a4
V. I. Ryazhskih; A. A. Boger; A. V. Ryazhskih. A linear model of the motion of a low-concentration suspension of monodisperse Stokes particles in a flat channel. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 65-75. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a4/

[1] A. Einstein, “Eine neue Bestimmung der Molekuldimensionen”, Annalen der Physik, 19 (1906), 289–306 | DOI | Zbl

[2] E. Cunningham, “On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium”, Proc. R. Soc. Lond. A, 83 (1910), 357–365 | DOI | Zbl

[3] M. Smoluchowski, “Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen”, Bull. Int. Acad. Sci. Cracovie. Ser. 1A, 1911, 28–39 | Zbl

[4] A. Einstein, N. Chien, Effects of Heavy Concentration Near the Bed on the Velocity and Sediment Distribution, MRD Sediment Series, 8, University of California, Berkeley, 1955

[5] Pokrovskiy V. P., Statistical Mechanics of Dilute Suspensions, Nauka, M., 1978, 135 pp.

[6] G. Junke, Y. J. Pierre, “Turbulent Velocity Profiles in Sediment-Laden Flows”, Journal of Hydraulic Research, 39:1 (2001), 11–23 | DOI

[7] A. F. Venturu, A. P. Garcia, P. J. Ferreira, M. G. Rasteiro, “Modeling the Turbulent Flow of Pulp Suspensions”, Ind. Eng. Chem. Res., 50:16 (2011), 9735–9742 | DOI

[8] Z. Shanliang, L. Jianzhong, Z. Weifeng, “Numerical Research on the Fiber Suspensions in a Turbulent T-Shaped Branching Channel Flow”, Chinese Journal of Chemical Engineering, 15:1 (2007), 30–38 | DOI

[9] Gus'kov S. B., “Self-consistent Field Method is Applied to the Dynamics of Viscous Suspensions”, Applied Mathematics and Mechanics, 77:4 (2013), 557–572 (in Russian)

[10] Nigmatulin R. N., Fundamentals of Mechanics of Heterogeneous Media, Nauka, M., 1978, 336 pp. | MR

[11] D. A. Baranov, A. V. Vjaz'min, A. A. Tuhman, Processes and Devices of Chemical Technology. Transport Phenomena, Macrokinetics, Likeness, Modelling, Design. Fundamentals of the Theory of Chemical Technology Processes, Logos, M., 2000, 480 pp.

[12] Harin V. M., Ryazhskih V. I., “On the Theory of Deposition”, Theoretical Foundations of Chemical Engineering, 23:5 (1989), 651–658 (in Russian)

[13] Cvetkov F. F., Grigor'ev B. A., Heat and Mass Transfer, Izd-vo MJeI, M., 2005, 550 pp.

[14] Dötsch G., Anleitung zum praktischen gebrauch der Laplace-transformation und der z-transformation, dritte Auflage, Wien, 1967 | MR

[15] Belyaev N. M., Ryadno A. A., Methods of the Teory of Heat Conduction, v. 1, Vysshaya shkola, M., 1982, 327 pp.