Some inverse problems for convection-diffusion equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 36-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We examine the well-posedness questions for some inverse problems in the mathematical models of heat-and-mass transfer and convection-diffusion processes. The coefficients and right-hand side of the system are recovered under certain additional overdetermination conditions, which are the integrals of a solution with weights over some collection of domains. We prove an existence and uniqueness theorem, as well as stability estimates. The results are local in time. The main functional spaces used are Sobolev spaces. These results serve as the base for justifying of the convergence of numerical algorithms for inverse problems with pointwise overdetermination, which arise, in particular, in the heat-and-mass transfer problems on determining the source function or the parameters of a medium.
Keywords: parabolic system; convection-diffusion; heat-and-mass transfer; inverse problem; control problem; boundary value problem; well-posedness.
@article{VYURU_2014_7_4_a2,
     author = {S. G. Pyatkov and E. I. Safonov},
     title = {Some inverse problems for convection-diffusion equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {36--50},
     year = {2014},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a2/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - E. I. Safonov
TI  - Some inverse problems for convection-diffusion equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 36
EP  - 50
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a2/
LA  - en
ID  - VYURU_2014_7_4_a2
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A E. I. Safonov
%T Some inverse problems for convection-diffusion equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 36-50
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a2/
%G en
%F VYURU_2014_7_4_a2
S. G. Pyatkov; E. I. Safonov. Some inverse problems for convection-diffusion equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 36-50. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a2/

[1] Alekseev G. V., Optimization in Stationary Problems of Heat and Mass Transfer and Magnetic Hydrodynamics, Nauchnyi Mir, M., 2010

[2] Belov Ya. Ya., Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002 | Zbl

[3] Babeshko O. M., Evdokimova O. V., Evdokimov S. M., “On Taking into Account the Types of Sources and Settling Zones of Pollutants”, Doklady Mathematics, 61:2 (2000), 283–285 | MR | Zbl

[4] Kalinina E. A., “A Numerical Study of an Inverse Problem of Recovering the Heat Source for the Two-Dimensional Nonstationary Convection-Diffusion Equation”, Far Eastern Mathematical Journal, 5:1 (2004), 89–99 (in Russian)

[5] Kriksin Yu. A., Plushchev S. N., Samarskaya E. A., Toshkin V. F., “Inverse Problem of Recovering the Source Density for a Convection-Diffusion Equation”, Mathematical Modelling, 7:11 (1995), 95–108 (in Russian) | MR | Zbl

[6] Iskenderov A. D., Akhundov A. Ya., “Inverse Problem for a Linear System of Parabolic Equations”, Doklady Mathematics, 79:1 (2009), 73–75 | DOI | MR | Zbl

[7] Ismailov M. I., Kanca F., “Inverse Problem of Finding the Time-Dependent Coefficient of Heat Equation from Integral Overdetermination Condition Data”, Inverse Problems In Science and Engineering, 20:24 (2012), 463–476 | MR | Zbl

[8] Ivanchov M. I., “Inverse Problem of Simulataneous Determination of Two Coefficients in a Parabolic Equation”, Ukrainian Mathematical Journal, 52:3 (2000), 379–387 | DOI | MR | Zbl

[9] Jing Li, Youjun Xu, “An Inverse Coefficient Problem with Nonlinear Parabolic Equation”, Journal of Applied Mathematics and Computing, 34:1–2 (2010), 195–206 | DOI | MR | Zbl

[10] Kamynin V. L., Franchini E., “An Inverse Problem for a Higher-Order Parabolic Equation”, Mathematical Notes, 64:5 (1998), 590–599 | DOI | MR | Zbl

[11] Kerimov N. B., Ismailov M. I., “An Inverse Coefficient Problem for the Heat Equation in the Case of Nonlocal Boundary Conditions”, Journal of Mathematical Analysis and Applications, 396:2 (2012), 546–554 | DOI | MR | Zbl

[12] Kozhanov A. I., “Parabolic Equations with an Unknown Coeffiecient Depending on Time”, Computational Mathematics and Mathematical Physics, 45:12 (2005), 2085–2101 | MR | Zbl

[13] Vasin I. A., Kamynin V. L., “On the Asymptotic Behavior of Solutions to Inverse Problems for Parabolic Equations”, Siberian Mathematical Journal, 38:4 (1997), 647–662 | DOI | MR | Zbl

[14] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999 | MR

[15] Tryanin A. P., “Determination of Heat-Transfer Coefficients at the Inlet into a Porous Body and Inside It by Solving the Inverse Problem”, Journal of Engineering Physics, 52:3 (1987), 346–351 | DOI

[16] Dehghan M., Shakeri F., “Method of Lines Solutions of the Parabolic Inverse Problem with an Overspecification at a Points”, Numerical Algorithms, 50:4 (2009), 417–437 | DOI | MR | Zbl

[17] Pyatkov S. G., Samkov M. L., “On Some Classes of Coefficient Inverse Problems for Parabolic Systems of Equations”, Sib. Adv. in Math., 22:4 (2012), 287–302 | DOI | MR | Zbl

[18] Pyatkov S. G., “On Some Classes of Inverse Problems for Parabolic Equations”, Journal of Inverse Ill-Posed problems, 18:8 (2011), 917–934 | DOI | MR

[19] Ivanchov M., Inverse Problems for Equations of Parabolic Type, Math. Studies. Monograph Series, 10, WNTL Publishers, Lviv, 2003 | MR

[20] Kabanikhin S. I., Inverse and Illl-posed problems, Sibirskoe Nauchn. Izdat., Novosibirsk, 2009, 457 pp.

[21] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing, Amsterdam, 1978 | MR | Zbl

[22] Amann H., “Compact Embeddings of Vector-Valued Sobolev and Besov Spaces”, Glasnik matematicki, 35:55 (2000), 161–177 | MR | Zbl

[23] Amann H., “Operator-Valued Foutier Multipliers, Vector-Valued Besov Spaces and Applications”, Mathematische Nachrichten, 186:1 (1997), 5–56 | DOI | MR | Zbl

[24] Amann H., Linear and Quasilinear Parabolic Problems, v. I, Birkhauser Verlag, Basel–Boston–Berlin, 1995 | DOI | MR | Zbl

[25] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasilinear Equations of the Parabolic Type, Nauka, M., 1967

[26] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equation of the Elliptic Type, Nauka, M., 1973 | MR

[27] Alifanov O. M., Artyukhov E. A., Nenarokom A. V., Inverse Problems of Complicated Heat Exchange, Yanus-K, M., 2009

[28] Alifanov O. M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin–Heidelberg, 1994 | DOI | Zbl

[29] Ozisik M. N., Orlando H. A. B., Inverse Heat Transfer, Taylor Francis, New-York, 2000