Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued “noises”
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 132-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Leontieff-type stochastic equation, that is, a system of differential equations implicit with respect to the time derivative in the spaces of random processes. The concepts previously introduced for the spaces of differentiable "noise" using the Nelson–Gliklikh derivative carry over to the case of complex-valued "noise" ; in addition, the right-hand side of the equation is subject to multiplicative effect of a special form. We construct a solution to the Showalter–Sidorov problem for Leontieff-type equations with multiplicative effect of a complex-valued process of special form. Aside from the introduction and references, the article consists of two parts. In the first part we carry over various concepts of the space of real-valued differentiable "noise" to the complex-valued case. In the second part we construct a Showalter–Sidorov solution to a Leontieff-type equation with multiplicative effect of a complex-valued process of special form. The list of references is not intended to be complete and reflects only the authors' personal preferences.
Keywords: Leontieff-type equations; multiplicative effect; Wiener process; Nelson–Gliklikh derivative; space of complex-valued "noises" ; "white noise".
@article{VYURU_2014_7_4_a11,
     author = {A. L. Shestakov and M. A. Sagadeeva},
     title = {Stochastic {Leontieff-type} equations with multiplicative effect in spaces of complex-valued {\textquotedblleft}noises{\textquotedblright}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {132--139},
     year = {2014},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a11/}
}
TY  - JOUR
AU  - A. L. Shestakov
AU  - M. A. Sagadeeva
TI  - Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued “noises”
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 132
EP  - 139
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a11/
LA  - en
ID  - VYURU_2014_7_4_a11
ER  - 
%0 Journal Article
%A A. L. Shestakov
%A M. A. Sagadeeva
%T Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued “noises”
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 132-139
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a11/
%G en
%F VYURU_2014_7_4_a11
A. L. Shestakov; M. A. Sagadeeva. Stochastic Leontieff-type equations with multiplicative effect in spaces of complex-valued “noises”. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 132-139. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a11/

[1] Arato M., Linear Stochastic Systems with Constant Coefficients. A Statistical Approach, Springer, Berlin–Heidelberg–N.-Y., 1982 | DOI | MR | Zbl

[2] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.-Y., 2011 | DOI | MR | Zbl

[3] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992 | DOI | MR | Zbl

[4] Zamyshlyaeva A. A., “Stochastic Mathematical Model of Ion-Acoustic Waves in Plasma”, Natural and Technical Sciences, 2013, no. 4, 284–292 (in Russian)

[5] Zagrebina S. A., Soldatova E. A., “The linear Sobolev-type Equations With Relatively p-bounded Operators and Additive White Noise”, News of Irkutsk State University. Series “Mathematics”, 6:1 (2013), 20–34 (in Russian) | Zbl

[6] Sviridyuk G. A., Manakova N. A., “The Dynamical Models of Sobolev Type with Showalter–Sidorov Condition and Additive “Noise””, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 7:1 (2014), 90–103 (in Russian) | DOI | Zbl

[7] Melnikova I. V., Filinkov A. I., Alshansky M. A., “Abstract Stochastic Equations. II: Solutions in Spaces of Abstract Stochastic Distributions”, J. of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[8] Shestakov A. L., Sviridyuk G. A., “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288 (in Russian)

[9] Shestakov A. L., Sviridyuk G. A., Hudyakov Yu. V., “Dinamic Measurement in Spaces of “Noise””, Bulletin of the South Ural State University. Series "Computer Technologies, Automatic Control, Radio Electronics, 13:2 (2013), 4–11 (in Russian)

[10] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[11] Shestakov A., Sviridyuk G., Sagadeeva M., “Reconstruction of a Dynamically Distorted Signal with Respect to the Measuring Transducer Degradation”, Applied Mathematical Sciences, 8:41–44 (2014), 2125–2130 | DOI

[12] Keller A. V., Sagadeeva M. A., “The Numerical Solution of Optimal and Hard Control for Nonstationary System of Leontiev type”, Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika, 32:19 (2013), 57–66 (in Russian)

[13] Nelson E., Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, 1967 | MR