@article{VYURU_2014_7_4_a10,
author = {P. O. Moskvicheva and I. N. Semenova},
title = {The {Lyapunov} stability of the {Cauchy{\textendash}Dirichlet} problem for the generalized {Hoff} equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {126--131},
year = {2014},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/}
}
TY - JOUR AU - P. O. Moskvicheva AU - I. N. Semenova TI - The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 126 EP - 131 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/ LA - en ID - VYURU_2014_7_4_a10 ER -
%0 Journal Article %A P. O. Moskvicheva %A I. N. Semenova %T The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 126-131 %V 7 %N 4 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/ %G en %F VYURU_2014_7_4_a10
P. O. Moskvicheva; I. N. Semenova. The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 126-131. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/
[1] Hoff N. J., “Creep Buckling”, Aeronautical Quarterly, 7:1 (1956), 1–20
[2] Sidorov N. A., Common Questions of Regularity in Problems of Ramification Theory, Irkutsk Gos. Univ. Publ., Irkutsk, 1982, 314 pp. (in Russian) | MR
[3] Sidorov N. A., Romanova O. A., “Application of Certain Results of Branching Theory in the Solution of Degenerate Differential Equations”, Differential Equations, 19:9 (1983), 1516–1526 (in Russian) | MR | Zbl
[4] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Differential Equations with a Fredholm Operator at the Derivative”, Differential Equations, 23:4 (1987), 726–728 (in Russian) | MR | Zbl
[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 ; G. A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Seriya matematicheskaya, 57:3 (1993), 192–207 | DOI | MR | Zbl
[6] Sviridyuk G. A., Kazak V. O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | MR | Zbl
[7] Sviridyuk G. A., Trineeva I. K., “A Whitney Fold in the Phase Space of the Hoff Equation”, Russian Mathematics, 49:10 (2005), 49–55 | MR
[8] Bajazitova A. A., “The Phase Space of the Initial-Boundary Value Problem for a Generalized Hoff Equation”, Bulletin of the Magnitogorsk State University, 2010, no. 12, 15–21 (in Russian)
[9] Zagrebina S. A., Pivovarova P. O., “Stability and Instability of the Solutions of the Hoff Equations. The Numerical experiment”, Nonclassical Equations of Mathematical Physics, Izdatel'stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2010, 88–94 (in Russian)
[10] Sviridyuk G. A., Semenova I. N., “Solvability of an Inhomogeneous Problem for a Generalized Boussinesq Filtration Equation”, Differential Equations, 24:9 (1988), 1065–1069 | MR | Zbl