The Lyapunov stability of the Cauchy--Dirichlet problem for the generalized Hoff equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 126-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial boundary value problem with homogeneous Dirichlet boundary conditions for the generalized Hoff equation in a bounded domain. This equation models the dynamics of buckling of a double-tee girder under constant load and belongs to a large class of Sobolev type semilinear equations (We can isolate the linear and non-linear parts of the operator acting on the original function). The paper addresses the stability of zero solution of this problem. There are two methods in the theory of stability: the first one is the study of stability by linear approximation and the second one is the study of stability by Lyapunov function. We use the second Lyapunov's method adapted to the case of incomplete normed spaces. The main result of this paper is a theorem on the stability and asymptotic stability of zero solution to this problem.
Keywords: Sobolev-type equation; phase space; Lyapunov stability.
@article{VYURU_2014_7_4_a10,
     author = {P. O. Moskvicheva and I. N. Semenova},
     title = {The {Lyapunov} stability of the {Cauchy--Dirichlet} problem for the generalized {Hoff} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {126--131},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/}
}
TY  - JOUR
AU  - P. O. Moskvicheva
AU  - I. N. Semenova
TI  - The Lyapunov stability of the Cauchy--Dirichlet problem for the generalized Hoff equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 126
EP  - 131
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/
LA  - en
ID  - VYURU_2014_7_4_a10
ER  - 
%0 Journal Article
%A P. O. Moskvicheva
%A I. N. Semenova
%T The Lyapunov stability of the Cauchy--Dirichlet problem for the generalized Hoff equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 126-131
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/
%G en
%F VYURU_2014_7_4_a10
P. O. Moskvicheva; I. N. Semenova. The Lyapunov stability of the Cauchy--Dirichlet problem for the generalized Hoff equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 126-131. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/