The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 126-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the initial boundary value problem with homogeneous Dirichlet boundary conditions for the generalized Hoff equation in a bounded domain. This equation models the dynamics of buckling of a double-tee girder under constant load and belongs to a large class of Sobolev type semilinear equations (We can isolate the linear and non-linear parts of the operator acting on the original function). The paper addresses the stability of zero solution of this problem. There are two methods in the theory of stability: the first one is the study of stability by linear approximation and the second one is the study of stability by Lyapunov function. We use the second Lyapunov's method adapted to the case of incomplete normed spaces. The main result of this paper is a theorem on the stability and asymptotic stability of zero solution to this problem.
Keywords: Sobolev-type equation; phase space; Lyapunov stability.
@article{VYURU_2014_7_4_a10,
     author = {P. O. Moskvicheva and I. N. Semenova},
     title = {The {Lyapunov} stability of the {Cauchy{\textendash}Dirichlet} problem for the generalized {Hoff} equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {126--131},
     year = {2014},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/}
}
TY  - JOUR
AU  - P. O. Moskvicheva
AU  - I. N. Semenova
TI  - The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 126
EP  - 131
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/
LA  - en
ID  - VYURU_2014_7_4_a10
ER  - 
%0 Journal Article
%A P. O. Moskvicheva
%A I. N. Semenova
%T The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 126-131
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/
%G en
%F VYURU_2014_7_4_a10
P. O. Moskvicheva; I. N. Semenova. The Lyapunov stability of the Cauchy–Dirichlet problem for the generalized Hoff equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 126-131. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a10/

[1] Hoff N. J., “Creep Buckling”, Aeronautical Quarterly, 7:1 (1956), 1–20

[2] Sidorov N. A., Common Questions of Regularity in Problems of Ramification Theory, Irkutsk Gos. Univ. Publ., Irkutsk, 1982, 314 pp. (in Russian) | MR

[3] Sidorov N. A., Romanova O. A., “Application of Certain Results of Branching Theory in the Solution of Degenerate Differential Equations”, Differential Equations, 19:9 (1983), 1516–1526 (in Russian) | MR | Zbl

[4] Sidorov N. A., Falaleev M. V., “Generalized Solutions of Differential Equations with a Fredholm Operator at the Derivative”, Differential Equations, 23:4 (1987), 726–728 (in Russian) | MR | Zbl

[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 ; G. A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Seriya matematicheskaya, 57:3 (1993), 192–207 | DOI | MR | Zbl

[6] Sviridyuk G. A., Kazak V. O., “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:2 (2002), 262–266 | DOI | MR | Zbl

[7] Sviridyuk G. A., Trineeva I. K., “A Whitney Fold in the Phase Space of the Hoff Equation”, Russian Mathematics, 49:10 (2005), 49–55 | MR

[8] Bajazitova A. A., “The Phase Space of the Initial-Boundary Value Problem for a Generalized Hoff Equation”, Bulletin of the Magnitogorsk State University, 2010, no. 12, 15–21 (in Russian)

[9] Zagrebina S. A., Pivovarova P. O., “Stability and Instability of the Solutions of the Hoff Equations. The Numerical experiment”, Nonclassical Equations of Mathematical Physics, Izdatel'stvo Instituta Matematiki Im. S. L. Soboleva SO RAN, Novosibirsk, 2010, 88–94 (in Russian)

[10] Sviridyuk G. A., Semenova I. N., “Solvability of an Inhomogeneous Problem for a Generalized Boussinesq Filtration Equation”, Differential Equations, 24:9 (1988), 1065–1069 | MR | Zbl