A model of incentive wages as an optimal control problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 22-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This articles considers a «shirking» model under the theory of efficiency contracts, which determines the profile of a worker's individual wages depending on his experience. The profile is a stimulating condition to increase productivity and the period of employment. Certain additional assumtions reduce the model to a nonclassical variational problem or a linear optimal control problem. We prove nonemptiness criteria and the existence of solutions, find necessary and sufficient conditions for optimality, give an algorithm to solve the problem, and present the results of simulations.
Keywords: «shirking» model; an efficiency contract model; an efficiency wage model; incentive wages; nonclassical variational problem; linear optimal control problem.
@article{VYURU_2014_7_4_a1,
     author = {E. A. Aleksandrova and S. A. Anikin},
     title = {A model of incentive wages as an optimal control problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {22--35},
     year = {2014},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a1/}
}
TY  - JOUR
AU  - E. A. Aleksandrova
AU  - S. A. Anikin
TI  - A model of incentive wages as an optimal control problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 22
EP  - 35
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a1/
LA  - ru
ID  - VYURU_2014_7_4_a1
ER  - 
%0 Journal Article
%A E. A. Aleksandrova
%A S. A. Anikin
%T A model of incentive wages as an optimal control problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 22-35
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a1/
%G ru
%F VYURU_2014_7_4_a1
E. A. Aleksandrova; S. A. Anikin. A model of incentive wages as an optimal control problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 4, pp. 22-35. http://geodesic.mathdoc.fr/item/VYURU_2014_7_4_a1/

[1] Ehrenberg R. J., Smith R. S., Modern Labor Economics: Theory and Public Policy, Pearson Education, Inc., 2009

[2] Milgrom P., Roberts J., Economics, Organization and Management, Prentice-Hall, Englewood Cliffs, N.J., 1992 | Zbl

[3] R. Gibbons, “Incentives between firms (and within)”, Management Science, 51:1 (2005), 2–17 | DOI

[4] E. Lazear, “Agency, Earnings Profiles, Productivity, and Hours Restrictions”, The American Economic Review, 1981, September, 606–620

[5] Belyaeva M. G., The Employee and Employer. The Theory of Contractual Relations, Izd-vo SNC RAN, Samara, 2008

[6] Smirnykh L. I., The Duration of Employment and Labor Mobility, TEIS, M., 2003

[7] Kalabina E. G., Evolution of Relations “the Employee–Employer” in the Economic Organization, Institut Economiki UrO RAN, Yekaterinburg, 2011

[8] Popov E., Simonova V., “Evaluation of Intra-Firm Opportunism of Employees and Managers”, Problemy teorii i praktiki upravleniya, 2005, no. 4, 108–117 (in Russian)

[9] Ioffe A. D., Tikhomirov V. M., Theory of Extremal Problems, Nauka, M., 1974 | MR | Zbl

[10] Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Nauka, M., 1988 | MR

[11] Lions J. L., Controle Optimal de Systemes Gouvernes par des Equations aux Derivecs Partielles, Dunod Gauthier-Villars, Paris, 1968 | MR | MR

[12] Sviridyuk G. A., Efremov A. A., “An Optimal Control Problem for One Class of Linear Sobolev Type Equations”, Russian Mathematics (Izvestiya VUZ. Matematika), 40:12 (1996), 60–71 | MR | Zbl

[13] Vasil'ev F. P., Methods for Solving Extreme Problems, Nauka, M., 1981 | MR