Multistep Method for Solving Degenerate Integral-Differential Equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 93-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we consider the linear integral-differential equations of the fist order with the identically singular matrix at the derivative. For these systems, the initial conditions is given and assumed consistent with the right part. Considered tasking in this paper arise in the mathematical modeling of complex electric circuits. By using the apparatus of matrix polynomials a class of problems, which having a unique solution, is marked out. The difficulties of the numerical solution of such problems, in particular the instability of many implicit methods is considered. For numerical solution of this class of problems we have suggested multistep methods, which are based on an explicit quadrature formula for the integral term Adams and extrapolation formulas. Sufficient conditions for the convergence of such algorithms to the exact solution is formulated.
Keywords: integral-differential equations; multistep methods; matrix polynomials.
@article{VYURU_2014_7_3_a9,
     author = {M. V. Bulatov and Do Tien Thanh},
     title = {Multistep {Method} for {Solving} {Degenerate} {Integral-Differential} {Equations}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {93--106},
     year = {2014},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a9/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - Do Tien Thanh
TI  - Multistep Method for Solving Degenerate Integral-Differential Equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 93
EP  - 106
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a9/
LA  - ru
ID  - VYURU_2014_7_3_a9
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A Do Tien Thanh
%T Multistep Method for Solving Degenerate Integral-Differential Equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 93-106
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a9/
%G ru
%F VYURU_2014_7_3_a9
M. V. Bulatov; Do Tien Thanh. Multistep Method for Solving Degenerate Integral-Differential Equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 93-106. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a9/

[1] Usakov E. I., Static Stability of Electrical Systems, Nauka, Novosibirsk, 1988 | Zbl

[2] Scendy K., Modern Methods of Analysis of Electric Circuits, Energiya, M., 1971, 360 pp.

[3] Bulatov M. V., Chistyakova E. V., “On a Family of Singylar Integro-Differential Equations”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1558–1566 | DOI | MR | Zbl

[4] Budnikova O. S., Bulatov M. V., “Numerical Solution of Integral-algebraic Equations for Multistep Methods”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 691–701 | DOI | MR | Zbl

[5] Bakhvalov N. S., Numerical Methods, Nauka, M., 1975

[6] Ten Men Yan, Approximate Solution of Linear Volterra Integral Equations of the First Kind, Candidate's Dissertation in Mathematics and Physics, Irkutsk, 1985

[7] H. Brunner, P. J. van der Houwen, The Numerical Solution of Volterra Equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986 | MR | Zbl

[8] P. Linz, Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | MR | Zbl

[9] Bulatov M. V., “Regularization of Singular Systems of Volterra Integral Equations”, Computational Mathematics and Mathematical Physics, 42:3 (2002), 315–320 | MR | MR | Zbl

[10] Bulatov M. V., Chistyakova E. V., “Numerical Solution of Integro-Differential Systems with a Degenerate Matrix Multiplying the Derivative by Multistep Methods”, Differential Equations, 42:9 (2006), 1317–1325 | DOI | MR | Zbl

[11] Bulatov M. V., Lee M.-G., “Applications of Matrix Polynomials to the Analysis of Linear Differential-Algegraic Equations of Higher Order”, Differential Equations, 44:10 (2008), 1353–1360 | DOI | MR | Zbl