On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 50-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper establishes the uniform well-posedness of the Cauchy problem for generalized telegraph equations with variable coefficients, of which the classical telegraph equation is a particular case. The well-posedness of a mathematical problem is one of the main requirements for its numerical solution. For the classical telegraph equation, Riemann's method enables us to solve the Cauchy problem in the class of twice continuously differentiable functions explicitly. The question of stability of the solution in dependence on the initial data, which requires us to work in suitable metric spaces, usually is not discussed; however, it appears to be one of the most important questions once the existence and uniqueness of the solution are known. In this note we use the theory of continuous semigroups of linear operators to establish the uniform well-posedness of the Cauchy problem in the spaces of integrable functions with exponential weight for several classes of differential equations with variable coefficients. We obtain the exact solution to the Cauchy problem and indicate conditions on the coefficients ensuring that the problem is uniformly well-posed in certain functional spaces. These results imply the uniform well-posedness of the Cauchy problem for the classical telegraph equation with constant coefficients.
Keywords: telegraph equation; well-posedness; semigroups; cosine function; Cauchy problem; fractional powers of operators.
@article{VYURU_2014_7_3_a4,
     author = {V. A. Kostin and A. V. Kostin and Salim Badran Yasim Salim},
     title = {On the {Well-Posedness} of the {Cauchy} {Problem} for the {Generalized} {Telegraph} {Equations}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {50--59},
     year = {2014},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a4/}
}
TY  - JOUR
AU  - V. A. Kostin
AU  - A. V. Kostin
AU  - Salim Badran Yasim Salim
TI  - On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 50
EP  - 59
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a4/
LA  - ru
ID  - VYURU_2014_7_3_a4
ER  - 
%0 Journal Article
%A V. A. Kostin
%A A. V. Kostin
%A Salim Badran Yasim Salim
%T On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 50-59
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a4/
%G ru
%F VYURU_2014_7_3_a4
V. A. Kostin; A. V. Kostin; Salim Badran Yasim Salim. On the Well-Posedness of the Cauchy Problem for the Generalized Telegraph Equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 50-59. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a4/

[1] Krein S. G., Linear Differential Equations in Banach Spaces, Birkhauser, Boston, 1982 | DOI | MR | Zbl

[2] Sviriduk G. A., “The Couchy Probem for a Linear Operator Equation with a Nonpositive Operator at the Derivative of Sobolev Type”, Differential Equations, 23:10 (1987), 1823–1825 (in Russian) | MR

[3] Koshlykov N. S., Gliner E. B., Smirnov M. M., Principal Differential Equations of Mathematical Physics, Fizmatlit, M., 1962, 767 pp. | MR

[4] Goldstein J. A., Semigroups of Linear Operators and Applications, Oxford Univ. Press, New York, 1985 | MR | MR | Zbl

[5] Yosida K., Functional Analysis, Springer Verlag, Berlin, 1965 | MR | Zbl

[6] V. A. Kostin, A. V. Kostin, D. V. Kostin, “$C_0$-Operator Laplace Integral and Boundary Value Problems for Operator Degenerate Equations”, Doklady Mathematics, 84:3 (2011), 770–773 | DOI | MR | MR | Zbl | Zbl

[7] Kostin V. A., Kostin A. V., Kostin D. V., “On Exact Solutions of the Cauchy Problem for Some Parabolic and Hyperbolic Equations”, Doklady Mathematics, 87:1 (2013), 12–14 | DOI | MR | MR | Zbl | Zbl

[8] Kostin V. A., Nebol'sina M. N., “Well-Posedness of Boundary Value Problems for a Second-Order Equation”, Doklady Mathematics, 80:2 (2009), 650–652 | DOI | MR | Zbl

[9] Krasnosel'skii M. A., Zabreyko P. P., Pustylnik E. I., Sobolevski P. E., Integral Operators in Spaces of Summable Functions, Noord Hoff, Leyden, 1976 | DOI | MR | Zbl

[10] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives Theory and Applications, Nauka i tekhnika, Minsk, 1987, 687 pp. (in Russian) | MR | Zbl