@article{VYURU_2014_7_3_a13,
author = {M. A. Sagadeeva and A. D. Badoyan},
title = {Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of {Sobolev} type},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {128--134},
year = {2014},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/}
}
TY - JOUR AU - M. A. Sagadeeva AU - A. D. Badoyan TI - Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2014 SP - 128 EP - 134 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/ LA - en ID - VYURU_2014_7_3_a13 ER -
%0 Journal Article %A M. A. Sagadeeva %A A. D. Badoyan %T Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2014 %P 128-134 %V 7 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/ %G en %F VYURU_2014_7_3_a13
M. A. Sagadeeva; A. D. Badoyan. Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 128-134. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/
[1] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl
[2] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. | MR | Zbl
[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | DOI | MR | Zbl
[4] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011, 648 pp. | MR | Zbl
[5] Zagrebina S. A., “The Multipoint Initial-Finish Problem for the Stochastic Barenblatt–Zheltov–Kochina Model”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics, 13:4 (2013), 103–111 (in Russian)
[6] Sagadeeva M. A., Badoyan A. D., “The Optimal Control over Solutions of Special Form of Nonstacionary Sobolev Type Equations in Relatively Spectral Case”, Bulletin of Magnitogorsk State University. Mathematics, 2013, no. 15, 68–80 (in Russian)
[7] Sagadeeva M. A., Badoyan A. D., “The Problem of Optimal Control over Solutions of the Nonstationary Barenblatt–Zheltov–Kochina Model”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics, 14:2 (2014), 5–11
[8] Zagrebina S., Sagadeeva M., “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, The Bulletin of Irkutsk State University. Series: Mathematics, 7 (2014), 19–33 | Zbl
[9] Keller A. V., “Relatively Spectral Theorem”, Bulletin of the Chelyabinsk State University. Series of Mathematic and Mechanic, 1996, no. 1 (3), 62–66 (in Russian) | MR