Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 128-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of optimal control of solutions to an operator-differential equation, which is not solved with respect to the time derivative, together with a multipoint initial-final condition. In this case, one of the operators in the equation is multiplied by a scalar function of time. By the properties of the operators involved, the stationary equation has analytical resolving group. We construct a solution to the multipoint initial-final problem for the nonstationary equation. We show that a unique optimal control of solutions to this problem exists. Apart from the introduction and bibliography, the article consists of three sections. The first section provides the essentials of the theory of relatively $p$-bounded operators. In the second section we construct a strong solution to the multipoint initial-final problem for nonstationary Sobolev-type equations. The third section contains our proof that there exists a unique optimal control of solutions to the multipoint initial-final problem.
Keywords: optimal control; multipoint initial-final problem; Sobolev-type equations; relatively bounded operator.
@article{VYURU_2014_7_3_a13,
     author = {M. A. Sagadeeva and A. D. Badoyan},
     title = {Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of {Sobolev} type},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--134},
     year = {2014},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - A. D. Badoyan
TI  - Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 128
EP  - 134
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/
LA  - en
ID  - VYURU_2014_7_3_a13
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A A. D. Badoyan
%T Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 128-134
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/
%G en
%F VYURU_2014_7_3_a13
M. A. Sagadeeva; A. D. Badoyan. Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 128-134. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a13/

[1] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl

[2] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, Inc., New York–Basel–Hong Kong, 2003, 239 pp. | MR | Zbl

[3] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 216 pp. | DOI | MR | Zbl

[4] Al'shin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011, 648 pp. | MR | Zbl

[5] Zagrebina S. A., “The Multipoint Initial-Finish Problem for the Stochastic Barenblatt–Zheltov–Kochina Model”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics, 13:4 (2013), 103–111 (in Russian)

[6] Sagadeeva M. A., Badoyan A. D., “The Optimal Control over Solutions of Special Form of Nonstacionary Sobolev Type Equations in Relatively Spectral Case”, Bulletin of Magnitogorsk State University. Mathematics, 2013, no. 15, 68–80 (in Russian)

[7] Sagadeeva M. A., Badoyan A. D., “The Problem of Optimal Control over Solutions of the Nonstationary Barenblatt–Zheltov–Kochina Model”, Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control, Radio Electronics, 14:2 (2014), 5–11

[8] Zagrebina S., Sagadeeva M., “The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case”, The Bulletin of Irkutsk State University. Series: Mathematics, 7 (2014), 19–33 | Zbl

[9] Keller A. V., “Relatively Spectral Theorem”, Bulletin of the Chelyabinsk State University. Series of Mathematic and Mechanic, 1996, no. 1 (3), 62–66 (in Russian) | MR