The existence of a unique solution to a mixed control problem for Sobolev-type equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 121-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies a mixed control problem for Sobolev-type equations in the case of a relatively radial operator. We use the Showalter–Sidorov initial condition. The difference in the statement of our problem from those studied previously by other researchers amounts to the form of the quality functional, which, in the authors' opinion, is more adequate to model applications in economics and technology. We prove an existence and uniqueness theorem for the solution to this problem.
Keywords: mixed control problem; optimal control; Sobolev-type system; Showalter–Sidorov condition.
@article{VYURU_2014_7_3_a12,
     author = {A. V. Keller and A. A. Ebel},
     title = {The existence of a unique solution to a mixed control problem for {Sobolev-type} equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {121--127},
     year = {2014},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a12/}
}
TY  - JOUR
AU  - A. V. Keller
AU  - A. A. Ebel
TI  - The existence of a unique solution to a mixed control problem for Sobolev-type equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 121
EP  - 127
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a12/
LA  - en
ID  - VYURU_2014_7_3_a12
ER  - 
%0 Journal Article
%A A. V. Keller
%A A. A. Ebel
%T The existence of a unique solution to a mixed control problem for Sobolev-type equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 121-127
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a12/
%G en
%F VYURU_2014_7_3_a12
A. V. Keller; A. A. Ebel. The existence of a unique solution to a mixed control problem for Sobolev-type equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 121-127. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a12/

[1] Sviridyuk G. A., Efremov A. A., “Optimal Control of Sobolev-Type Linear Equations with Relatively p-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl

[2] Sviridyuk G. A., Efremov A. A., “Optimal Control Problem for One Class of Linear Sobolev Type Equations”, Russian Mathematics (Izvestiya VUZ. Matematika), 40:12 (1996), 60–71 | MR

[3] Zagrebina S. A., Sagadeeva M. A., “The Generalized Showalter–Sidorov Problem for the Sobolev type Equations with strongly $(L,p)$-radial operator”, Bulletin of Magnitogorsk State University. Series «Mathematics», 2006, no. 9, 17–27 (in Russian) ; М. А. Сагадеева, А. Н. Шулепов, “Задачи оптимального и жесткого управления решениями специального вида нестационарных уравнений соболевского типа”, Вестник СамГТУ. Серия: Физико-математические науки, 2014, No 2 (35), 156–160 | MR | Zbl

[4] Fedorov V. E., Plehanova M. V., “Optimal Control of Sobolev Type Linear Equations”, Differential Equations, 40:11 (2004), 1627–1637 | DOI | MR | Zbl

[5] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003, 179 pp. | DOI | MR | Zbl

[6] Manakova N. A., Bogonos E. A., “Optimal Control to Solutions of the Showalter–Sidorov Problem for a Sobolev Type Equation”, The Bulletin of Irkutsk State University. Series: Mathematics, 3:1 (2010), 42–53 (in Russian) | MR | Zbl

[7] Islamova A. F., Mixed Optimal Control Problem for Linear Distributed Sobolev Type Systems, The Dissertation for Scientific Degree of the Candidate of Physical and Mathematical Sciences, Chelyabinsk State University, Chelyabinsk, 2012, 129 pp.

[8] Keller A. V., Numerical Reseach of Optimal Control Problem for Leontieff Type Models, The Dissertation for Scientific Degree of the Doctor of Physical and Mathematical Sciences, South Ural State University, Chelyabinsk, 2011, 252 pp.

[9] Lions J.-L., Contrôle optimal de systémes gouvernés par des équations aux dérivées partielles, Dunod, Paris, 1968 ; Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Mir, M., 1972, 587 pp. | MR | MR