Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 107-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral equations are in the core of many mathematical models in physics, economics and ecology. Volterra integral equations of the first kind with jump discontinuous kernels play important role in such models and they are considered in this article. Regularization method and sufficient conditions are derived for existence and uniqueness of the solution of such integral equations. An efficient numerical method based on the mid-rectangular quadrature rule is proposed for these equations with jump discontinuous kernels. The accuracy of proposed numerical method is $\mathcal{O}(N^{-1})$. The model examples demonstrate efficiency of proposed method: errors, two mesh differences and orders of convergent.
Keywords: Volterra integral equations of the 1st kind; evolving systems; Glushkov integral model; numerical method.
@article{VYURU_2014_7_3_a10,
     author = {D. N. Sidorov and A. N. Tynda and I. R. Muftahov},
     title = {Numerical {Solution} of {Volterra} {Integral} {Equations} of the {First} {Kind} with {Piecewise} {Continuous} {Kernel}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {107--115},
     year = {2014},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a10/}
}
TY  - JOUR
AU  - D. N. Sidorov
AU  - A. N. Tynda
AU  - I. R. Muftahov
TI  - Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2014
SP  - 107
EP  - 115
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a10/
LA  - ru
ID  - VYURU_2014_7_3_a10
ER  - 
%0 Journal Article
%A D. N. Sidorov
%A A. N. Tynda
%A I. R. Muftahov
%T Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2014
%P 107-115
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a10/
%G ru
%F VYURU_2014_7_3_a10
D. N. Sidorov; A. N. Tynda; I. R. Muftahov. Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 7 (2014) no. 3, pp. 107-115. http://geodesic.mathdoc.fr/item/VYURU_2014_7_3_a10/

[1] Sidorov D. N., Methods of Analysis of Integral Dynamic Models: Theory and Applications, Izd. IGU, Irkutsk, 2013, 293 pp.

[2] I. V. Boikov, A. N. Tynda, “Approximate Solution of Nonlinear Integral Equations of Developing Systems Theory”, Differential Equations, 39:9 (2003), 1277–1288 | DOI | MR

[3] Sidorov D. N., “Solution to the Volterra Integral Equations of the First Kind with Discontinuous Kernels”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming Computer Software, 2012, no. 18 (277), 44–52 (in Russian) | Zbl

[4] E. V. Markova, D. N. Sidorov, “On One Integral Volterra Model of Developing Dynamical Systems”, Automation and Remote Control, 75:3 (2014), 413–421 | DOI | MR | Zbl

[5] A. Micke, “The Treatment of Integral Equations with Discontinuous Kernels Using Product Type Quadrature Formula”, Computing, 42 (1989), 207–223 | DOI | MR | Zbl

[6] D. N. Sidorov, “Volterra Equations of the First Kind with Discontinuous Kernels in the Theory of Evolving Systems Control”, Stud. Inform. Univ., 9 (2011), 135–146

[7] D. N. Sidorov, “On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with Piecewise Smooth Kernel”, Differential Equations, 49:2 (2013), 210–216 | DOI | MR | Zbl

[8] D. N. Sidorov, “Solvability of Systems of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels”, Russian Mathematics, 57:1 (2013), 62–72 | DOI | MR | Zbl

[9] A. N. Tynda, “Numerical Algorithms of Optimal Complexity for Weakly Singular Volterra Integral Equations”, Comp. Meth. Appl. Math., 6:4 (2006), 436–442 | MR | Zbl