Quadrature Formulas with High Order Approximation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 87-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article the method of creation the quadrature formulas with high order approximation for a wide class of the areas is given. This method is based on approach of smooth function on the plane by the semilocal smoothing spline or S-spline. Semilocal smoothing splines are initiated by D. A. Silaev. Earlier the splines of the third and fifth degree are considered and applied. This work is devoted to use of S-splines of higher degrees. Steady $S$-splines of a class of $C^0$ (only continuous), consisting of polynoms of high degree of $n$ ($n=9, 10$) makes it possible to receive quadrature formulas of the 10th and 11th orders of approximation. It is supposed that integrand function belongs to $C^p$ class (to $p=10, 11$) in a bigger area, than initial area on which integration is conducted. It is also supposed that the border of area is set parametrically that helps to consider area border with a fine precision. Similar approach is possible for the construction of cubature formulas.
Keywords: an approximation; a spline; integrals; quadrature formulas; numerical methods.
@article{VYURU_2013_6_4_a8,
     author = {D. A. Silaev},
     title = {Quadrature {Formulas} with {High} {Order} {Approximation}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {87--100},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a8/}
}
TY  - JOUR
AU  - D. A. Silaev
TI  - Quadrature Formulas with High Order Approximation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 87
EP  - 100
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a8/
LA  - ru
ID  - VYURU_2013_6_4_a8
ER  - 
%0 Journal Article
%A D. A. Silaev
%T Quadrature Formulas with High Order Approximation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 87-100
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a8/
%G ru
%F VYURU_2013_6_4_a8
D. A. Silaev. Quadrature Formulas with High Order Approximation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 87-100. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a8/

[1] Babenko K. I., Fundamentals of Numerical Analysis, NITs Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2002

[2] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, M., 1974 | MR

[3] Mysovskikh I. P., Java Applet Formula, Nauka, M., 1981 | MR | Zbl

[4] Krylov A. N., Lectures on Approximate Calculations, GITTL, M.–L., 1950

[5] Stechkin S. B., Subbotin Yu. N., Splines in Computational Mathematics, Nauka, M., 1976 | MR | Zbl

[6] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Methods of Spline Functions, Nauka, M., 1980 | MR

[7] Kolmogorov A. N., “On the Representation of Continuous Functions of Several Variables by Superposition of Functions of One Variable and Addition”, Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1985

[8] Sobolev S. L., Vaskevich V. L., Cubature Formula, Izd-vo IM SO RAN, Novosibirsk, 1996 | Zbl

[9] Ramazanov M. D., The Theory of Lattice Rules with a Limited Boundary Layer, IMVTs UNTs RAN, Ufa, 2009

[10] Silaev D. A., Korotaev D. O., “Cubature Formulas of High-Order Methods for a Wide Range of Areas”, Mathematics. Computer. Education, Proceedings Works of the XVI International Conference (Izhevsk, 2009), v. 2, 20–38

[11] Silaev D. A., “Cubature Formulas of High-Order Methods for Arbitrary Domains”, Contemporary Mathematics and Mathematics Education, the Problems of the History and Philosophy Mathematics, Proceedings Works International Conference (Tambov, 2008), 65–70

[12] Silaev D. A., “Semilocal Smoothing $S$-splines”, Computer Research and Modelling, 2:4 (2010), 349–358 | MR

[13] Silaev D. A., Yakushina G. I., “S-Spline Approximation of Smooth Functions”, Proceedings of the Seminar Named I. G. Petrovsky, 10, 1984, 197–206 | Zbl

[14] Silaev D. A., Korotaev D. O., “S-Spline Lap”, Mathematics. Computer. Education, Proceedings of the International Conference (Pushchino, 2003), 157