Inverse Problems for the Second Order Hyperbolic Equation with Unknown Time Depended Coefficient
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the solvability of the inverse problem with an unknown time depended coefficient for a second-order hyperbolic equation. We also study uniqueness of the problem solution. The problem is stated as follows: it is required to find a solution and an unknown coefficient of the equation. Here the problem is considered in a rectangle area, with a set conditions being typical of the first boundary-value problem and an overdetermination condition being necessary of the unknown coefficient searching. To study solvability of the inverse problem, we realize a conversion from the initial problem to a some direct supplementary problem with trivial boundary conditions. We prove the solvability of the supplementary problem in the class of the functions considered above. Then we realize a conversion to the first problem again and as a result we receive the solvability of the inverse problem. To prove solvability of the problem, we use the method of continuation on a parameter, fixed point theorem, cut-off functions, and the method of regularization. In the article we prove the theorems of the existence and the uniqueness of the problem solution in the class of the functions considered above.
Keywords: inverse problem; hyperbolic equation; weighted equation; continuation method on parameter; method of a motionless point; regularization method.
@article{VYURU_2013_6_4_a7,
     author = {R. R. Safiullova},
     title = {Inverse {Problems} for the {Second} {Order} {Hyperbolic} {Equation} with {Unknown} {Time} {Depended} {Coefficient}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {73--86},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a7/}
}
TY  - JOUR
AU  - R. R. Safiullova
TI  - Inverse Problems for the Second Order Hyperbolic Equation with Unknown Time Depended Coefficient
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 73
EP  - 86
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a7/
LA  - ru
ID  - VYURU_2013_6_4_a7
ER  - 
%0 Journal Article
%A R. R. Safiullova
%T Inverse Problems for the Second Order Hyperbolic Equation with Unknown Time Depended Coefficient
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 73-86
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a7/
%G ru
%F VYURU_2013_6_4_a7
R. R. Safiullova. Inverse Problems for the Second Order Hyperbolic Equation with Unknown Time Depended Coefficient. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 73-86. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a7/

[1] Valitov I. R., Kozhanov A. I., “Inverse Problems for Hyperbolic Equations: Unknown Time Depended Coefficients Case”, Vestnik NGU, Ser. Matematika, mekhanika, informatika, 6:1 (2006), 3–18

[2] Valitov I. R., “On Solvability Two Inverse Problems for Hyperbolic Equations”, Trudy Sterlitamakskogo filiala Akademii nauk respubliki Bashkortostan, Ser. Fiziko-matematicheskie i tekhnicheskie nauki, 2006, no. 3, 64–73 | MR

[3] Pavlov S. S., “Nolinear Inverse Problems for Many-Dimensional Hyperbolic Equations with Integral Overdetermination”, Matematicheskie zametki YaGU, 19:2 (2011), 128–154

[4] Yakubov S. Ya., Linear Differential-Operated Equations and It's Applications, ELM, Baku, 1985, 220 pp.

[5] Kozhanov A. I., “Nonlinear Weighted Equations and Inverse Problems”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 44:4 (2004), 694–716 | MR | Zbl

[6] Kozhanov A. I., “On Solvability Some Nonlinear Inverse Problems for Composite Type Equations”, Nelokal'nye kraevye zadachi i rodstvennye problemy biologii, informatiki, fiziki, Trudy mezhdunarodnoy konferentsii (Nalchik, 2006), 159–164

[7] Trenogin V. A., Functional Analysis, Nauka, M., 1980, 488 pp. | MR | Zbl

[8] Demidovich B. P., Lectures on the Mathematical Theory of Stability, Nauka, M., 1967, 472 pp. | MR

[9] Ladyzhenskaya O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equations, Nauka, M., 1973, 578 pp. | MR