Some Inverse Problems for Mathematical Models of Heat and Mass Transfer
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 63-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we consider well-posedness questions of inverse problems for mathematical models of heat and mass transfer. We recover a solution of a parabolic equation of the second order and a coefficient in this equation characterizing parameters of a medium and belonging to the kernel of a differential operator of the first order with the use of data of the first boundary value problem and the additional Neumann condition on the lateral boundary of a cylinder (thereby we have the Cauchy data on the lateral boundary of a cylinder). An unknown coefficient can occur in the main part of the equation. A solution is sought in a Sobolev space with sufficiently large summability exponent and an unknown coefficient in the class of continuous functions. The problem is shown to have a unique stable solution locally in time.
Keywords: inverse problem; heat and mass transfer; boundary value problem; parabolic equation; well-posedness; diffusion.
@article{VYURU_2013_6_4_a6,
     author = {S. G. Pyatkov and A. G. Borichevskaya},
     title = {Some {Inverse} {Problems} for {Mathematical} {Models} of {Heat} and {Mass} {Transfer}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {63--72},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a6/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - A. G. Borichevskaya
TI  - Some Inverse Problems for Mathematical Models of Heat and Mass Transfer
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 63
EP  - 72
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a6/
LA  - ru
ID  - VYURU_2013_6_4_a6
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A A. G. Borichevskaya
%T Some Inverse Problems for Mathematical Models of Heat and Mass Transfer
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 63-72
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a6/
%G ru
%F VYURU_2013_6_4_a6
S. G. Pyatkov; A. G. Borichevskaya. Some Inverse Problems for Mathematical Models of Heat and Mass Transfer. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 63-72. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a6/

[1] Kozhanov A. I., “Nonlinear Loaded Equations and Inverse Problems”, Computational Mathematics and Mathematical Physics, 414:4 (2004), 722–744

[2] Tryanin A. P., “Determination of Heat-Transfer Coefficients at the Inlet into a Porous Body and Inside it by Solving the Inverse Problem”, Inzhenerno-Fizichecheski Zhurnal, 52:3 (1987), 469–475

[3] A. Shidrar, “An Inverse Heat Conduction Problem”, South. Asien Bull. of Math., 26 (2002), 503–507 | DOI | MR

[4] Ya. Ya. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht, 2002, 211 pp. | MR | Zbl

[5] S. G. Pyatkov, B. N. Tsybikov, “On Some Classes of Inverse Problems for Parabolic and Elliptic Equations”, J. Evol. Equat., 11:1 (2011), 155–186 | DOI | MR | Zbl

[6] S. G. Pyatkov, “On Some Classes of Inverse Problems for Parabolic Equations”, J. Inv. Ill-Posed problems, 18:8 (2011), 917–934 | DOI | MR

[7] S. G. Pyatkov, M. L. Samkov, “On Some Classes of Coefficient Inverse Problems for Parabolic Systems of Equations”, Sib Adv. in Math., 22:4 (2012), 287–302 | DOI | MR | Zbl

[8] M. Ivanchov, Inverse Problems for Equation of Parabolic Type, WNTL Publishers, Lviv, 2003, 240 pp. | MR

[9] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 2006, 346 pp. | MR | Zbl

[10] A. G. Ramma, Inverse Problems. Mathematical and Analytical Techniques with Applications to Engineering, Springer Science, Business Media, Inc., Boston, 2005, 442 pp. | MR

[11] V. Isakov, Inverse Source Problems, AMS, Providence, Rhode Island, 1990, 193 pp. | MR | Zbl

[12] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, Inc., N.Y., 1999, 709 pp. | MR

[13] S. I. Kabanikhin, Inverse and Ill-Posed Problems, De Gruyter, Berlin–Boston, 2012, 459 pp. | MR | Zbl

[14] Borichevskaya A. G., “On an Inverse Problem for a Parabolic Equation with the Cauchy Data on the Lateral Boundary of a Cylinder”, Differential Equations and Related Problems, Proceedings of the international conference (Sterlitamak, 2013), 52–57 | MR

[15] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | MR

[16] Ladyzhenskaya O. A., Sollonnikov V. A., Ural'tseva N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967, 736 pp. | MR

[17] Pyatkov S. G., Borichevskaya A. G., “On an Inverse Problem for a Parabolic Equation with the Cauchy Data on the Lateral Boundary of a Cylinder”, Nonclassical Equations of Mathematical Physics, Sobolev Institute of Mathematics, Novosibirsk, 2012, 187–196

[18] P. Grisvard, “Equations Differentialles Abstraites”, Ann. Scient. Ec. Norm. Super. $4^e$-series, 2 (1969), 311–395 | MR | Zbl