One Guaranteed Equilibrium in Bertrand Duopoly under Uncertainty
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 48-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper considers Bertrand duopoly on a market of a differentiated product taking into account possible import. The price which is assigned for importers is nonstochastic uncertainty. The model of the duopoly is formalized as a non-cooperative two-person game under uncertainty. When the players choose their strategies, they tend to increase the price but they are guided by the value of uncertainty. The decision of the game is given as a strongly guaranteed equilibrium. It is based on the concept of an analog of a vector maximin. In the first stage (the analog of the interior minimum in the maximin) a continuous function is constructed for each player. This function is connected with the worst uncertainty. In the second stage (the analog of the exterior maximum in the maximin) Nash equilibrium is seen in «Guarantees game». «Guarantees game» is obtained after substitution uncertainties found earlier in the payoff functions. The strongly guaranteed equilibrium is built in an explicit form. The sufficient conditions for the existence of such decision are defined.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
guaranteed equilibrium; non-cooperative game; game under uncertainty; Bertrand duopoly.
                    
                  
                
                
                @article{VYURU_2013_6_4_a4,
     author = {A. A. Mansurova and I. S. Stabulit and S. A. Shunaylova},
     title = {One {Guaranteed} {Equilibrium} in {Bertrand} {Duopoly} under {Uncertainty}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {48--54},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a4/}
}
                      
                      
                    TY - JOUR AU - A. A. Mansurova AU - I. S. Stabulit AU - S. A. Shunaylova TI - One Guaranteed Equilibrium in Bertrand Duopoly under Uncertainty JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 48 EP - 54 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a4/ LA - ru ID - VYURU_2013_6_4_a4 ER -
%0 Journal Article %A A. A. Mansurova %A I. S. Stabulit %A S. A. Shunaylova %T One Guaranteed Equilibrium in Bertrand Duopoly under Uncertainty %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 48-54 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a4/ %G ru %F VYURU_2013_6_4_a4
A. A. Mansurova; I. S. Stabulit; S. A. Shunaylova. One Guaranteed Equilibrium in Bertrand Duopoly under Uncertainty. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 48-54. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a4/
