Differential-algebraic equations with regular local matrix pencils
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 39-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the projector based framework, any regular linear DAE features several continuous time-varying characteristic subspaces that are independent of construction technicalities, among them the so-called sum-subspaces. As it is well-known, the local matrix pencils of a higher-index time-varying linear DAE do not reflect the global structure of the DAE in general. We show that, on the given interval, the local matrix pencils of the DAE are regular and reflect the global DAE structure if several of these characteristic subspaces are time-invariant. We discuss practicable methods to check the time-invariance of these subspaces. The corresponding class of DAEs is related to the class of DAEs formerly introduced and discussed by Yuri E. Boyarintsev.
Keywords: time-varying DAEs; local matrix pencil; regularity.
@article{VYURU_2013_6_4_a3,
     author = {Ren\'e Lamour and Roswitha M\"arz},
     title = {Differential-algebraic equations with regular local matrix pencils},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {39--47},
     year = {2013},
     volume = {6},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a3/}
}
TY  - JOUR
AU  - René Lamour
AU  - Roswitha März
TI  - Differential-algebraic equations with regular local matrix pencils
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 39
EP  - 47
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a3/
LA  - en
ID  - VYURU_2013_6_4_a3
ER  - 
%0 Journal Article
%A René Lamour
%A Roswitha März
%T Differential-algebraic equations with regular local matrix pencils
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 39-47
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a3/
%G en
%F VYURU_2013_6_4_a3
René Lamour; Roswitha März. Differential-algebraic equations with regular local matrix pencils. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 39-47. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a3/

[1] Boyarintsev Ju. E., Regular and Singular Systems of Linear Ordinary Differential Equations, Nauka Siberian Branch, Novosibirsk, 1980 (in Russian) | Zbl

[2] Boyarintsev Ju. E., Solution Methods of Singular Systems of Ordinary Differential Equations, Nauka Siberian Branch, Novosibirsk, 1988 (in Russian) | Zbl

[3] Boyarintsev Ju. E., Solution Methods of Continuous and Discrete Problems for Singular Systems of Equations, Nauka Siberian Branch, Novosibirsk, 1996 (in Russian) | MR | Zbl

[4] Brenan K. E., Campbell S. L., Petzold L. R., The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations, North Holland Publishing Co., 1989 | MR | Zbl

[5] Estévez Schwarz D., Lamour R., “Projector Based Integration of {DAE}s with the {T}aylor Series Method Using Automatic Differentiation”, Numdiff 13 Proceedings (Halle, 2012) (to appear)

[6] Gantmacher F. R., Matrizenrechnung, v. I, II, Deutcher Verlag der Wissenchaften, Berlin, 1970 | MR

[7] Gear C. W., Petzold L. R., “Differential/Algebraic Systems and Matrix Pencils”, Matrix Pencils, Lecture Notes in Mathematics, 973, eds. B. Kagstrom, A. Ruhe, Springer-Verlag, Berlin–New York, 1983, 75–89 | DOI

[8] Griepentrog E., März R., Differential-Algebraic Equations and Their Numerical Treatment, BSB B. G. Teubner, Leipzig, 1986 | MR | Zbl

[9] Griepentrog E., März R., “Basic Properties of Some Differential-Algebraic Equations”, Zeitschrift für Analysis und ihre Anwendungen, 8:1 (1989), 25–40 | DOI | MR | Zbl

[10] Lamour R., März R., Tischendorf C., Differential-Algebraic Equations: A Projector Based Analysis, Springer, Berlin–Heidelberg, 2013 | MR | Zbl

[11] Lamour R., Monett Diaz D., “Index Determination of DAEs — a Wide Field for Automatic Differentiation”, v. 2, AIP Conference Proceedings, 1168, American Institute of Physics (AIP), Melville, NY, 2009, 727–730 | DOI | Zbl

[12] März R., “Index-2 Differential-Algebraic Equations”, Results in Mathematics, 1989, no. 15, 148–171 | MR