Pure Bending for the Multimodulus Material Beam at Creep Conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 26-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with the solution of pure bending of rectangular beam AK4-1T at constant temperature loaded constant bending moment. The research of construction for creep and long-term strength with the whole distribution pattern of stress until the beginning of destruction is considered. The numerical calculation of the problem is solved with the equations of the energy variant of the creep theory, as well as the solution continuation with respect to a parameter and the best parameterization, using three methods of numerical integration of ordinary differential equations: Euler method, Euler–Cauchy method and fourth-order Runge–Kutta method. The paper also considers the comparison of two methods for the solution of numerical results and a comparison of the numerical solutions with the experimental data as well.
Keywords: creep; fracture; specific dissipation power; damage parameter; method of solution continuation with respect to a parameter; the best parameterization; the system of differential-algebraic equations.
@article{VYURU_2013_6_4_a2,
     author = {E. B. Kuznetsov and S. S. Leonov},
     title = {Pure {Bending} for the {Multimodulus} {Material} {Beam} at {Creep} {Conditions}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {26--38},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a2/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - S. S. Leonov
TI  - Pure Bending for the Multimodulus Material Beam at Creep Conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 26
EP  - 38
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a2/
LA  - ru
ID  - VYURU_2013_6_4_a2
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A S. S. Leonov
%T Pure Bending for the Multimodulus Material Beam at Creep Conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 26-38
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a2/
%G ru
%F VYURU_2013_6_4_a2
E. B. Kuznetsov; S. S. Leonov. Pure Bending for the Multimodulus Material Beam at Creep Conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 26-38. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a2/

[1] Rabotnov Ju. N., Creep Problems in Structural Members, Nauka, M., 1966, 752 pp. | Zbl

[2] Kachanov L. M., The Theory of Creep, Fizmatgiz, M., 1960, 455 pp.

[3] Lepin G. F., Bondarenko Yu. D., “Creep of a Straight Beam Bending with the Damaging Material”, Problems of Strength, 1970, no. 7, 68–70 | MR

[4] Nikitenko A. F., Sosnin O. V., “Bending of Beam with Different Characteristics of Creep in Tension and Compression”, Problems of Strength, 1971, no. 6, 67–70

[5] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energy Variant of the Creep Theory, Institut gidrodinamiki SO AN SSSR, Novosibirsk, 1986, 95 pp.

[6] Gorev B. V., “To Calculation for Transient Creep Beam Bending of Material with Different Characteristics in Tension and Compression”, Continuum Dynamics, 14, 1973, 44–51

[7] Gorev B. V., Klopotov I. D., “Description of the Creep and Rupture of Beams Bending and Shafts Torsion by the Equations with Scalar Damage Parameter”, Journal of Applied Mechanics and Technical Physics, 40:6 (1999), 157–162

[8] Gorev B. V., Panamarev V. A., Peretyat'ko V. N., “Energy Variant of the Creep Theory in Metal Forming”, Sci. Iron and steel, 2011, no. 6, 16–18

[9] Sosnin O. V., Gorev B. V., Nikitenko A. F., “Justification of the Energy Variant of the Theory of Creep and Long-Term Strength of Metals”, Journal of Applied Mechanics and Technical Physics, 51:4 (2010), 188–197 | Zbl

[10] Formalev V. F., Reviznikov D. L., Numerical Methods, Fizmatlit, M., 2004, 400 pp.

[11] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003, 236 pp. | MR | MR | Zbl