Mathematical Modelling of Shock Wave Propagation in Heterogeneous Media with Chemical Transformations in the Gas Phase
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 128-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the modified mathematical model of «frozen» gas suspension that is invariant under Galilean transformation, the analysis of the influence of chemical reaction in the gas phase to the propagation of shock waves in a heterogeneous mixture is performed. It is shown that the shock wave can increase the rate of chemical reactions in the gas phase and the oxidation reaction results in an accelerated rise in temperature and pressure in the gas phase and increases the propagation velocity of the shock wave in a heterogeneous environment. Possible implementation situation where the loss of momentum and energy of the gas phase through the interaction with the condensed phase is fully compensated in the release of energy due to the gas phase chemical reactions, is possible. This fact must be taken into account when planning activities related to the prevention of technological disasters.
Keywords: heterogeneous medium; the phase; the shock wave.
@article{VYURU_2013_6_4_a13,
     author = {E. S. Shestakovskaya},
     title = {Mathematical {Modelling} of {Shock} {Wave} {Propagation} in {Heterogeneous} {Media} with {Chemical} {Transformations} in the {Gas} {Phase}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--133},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a13/}
}
TY  - JOUR
AU  - E. S. Shestakovskaya
TI  - Mathematical Modelling of Shock Wave Propagation in Heterogeneous Media with Chemical Transformations in the Gas Phase
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 128
EP  - 133
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a13/
LA  - ru
ID  - VYURU_2013_6_4_a13
ER  - 
%0 Journal Article
%A E. S. Shestakovskaya
%T Mathematical Modelling of Shock Wave Propagation in Heterogeneous Media with Chemical Transformations in the Gas Phase
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 128-133
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a13/
%G ru
%F VYURU_2013_6_4_a13
E. S. Shestakovskaya. Mathematical Modelling of Shock Wave Propagation in Heterogeneous Media with Chemical Transformations in the Gas Phase. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 128-133. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a13/

[1] Grishin A. M., Kovalev Yu. M., “Experimental Investigation the Impact of the Explosion of Condensed Explosives on the Front Crown Forest Fire”, Academy of Sciences of the USSR Doklads, 308:5 (1989), 1074–1078

[2] Grishin A. M., Kovalev Yu. M., “Experimental and Theoretical Iinvestigation of the Interaction of the Explosion on the Front Crown Forest Fire”, J. The Physics of Combustion and Explosion, 25:6 (1989), 72–79 | MR | Zbl

[3] Kovalev Yu. M., Kuropatenko V. F., “Analysis of the Invariance under the Galilean Transformation of Some Mathematical Models of Multi-media”, Bulletin of the South Ural State University. Series \flqq Mathematical modeling. Programming Computer Software\frqq, 2012, no. 27 (286), issue 13, 69–73

[4] Kovalev Yu. M., Shestakovskaya E. S., “Numerical Analysis of Cylindrical Shock Waves in Heterogeneous Environments”, Bulletin of the South Ural State University. Series \flqq Computer Technologies, Automatic Control, Radio Electronics\frqq, 13:3 (2013), 102–108

[5] Kovalev Yu. M., “The Equation of State and the Temperature of the Shock Compression of Crystalline Explosives”, J. The Physics of Combustion and Explosion, 20:2 (1984), 102–107