Parallelization of Algorithms for the Solution of Optimal Measurements in View of Resonances
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 122-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper describes a method for parallel algorithm of numerical solution of the problem of dynamically distorted signal inertial measurement unit and resonances in the chains that is optimal measuring with the resonances. The proposed approach can significantly increase the computing speed and remove the main drawback which is long time for computation and the procedure for finding the minimum of quality functional in the algorithm. Ideas of this method of parallelization algorithm can be applied to algorithms and solutions for optimal control problems of Leontief type systems.
Keywords: the problem of optimal measuring; resonances in circuits measuring device; Leontief type systems; dynamic measurements; optimal control.
@article{VYURU_2013_6_4_a12,
     author = {Y. V. Khudyakov},
     title = {Parallelization of {Algorithms} for the {Solution} of {Optimal} {Measurements} {in~View} of {Resonances}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {122--127},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a12/}
}
TY  - JOUR
AU  - Y. V. Khudyakov
TI  - Parallelization of Algorithms for the Solution of Optimal Measurements in View of Resonances
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 122
EP  - 127
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a12/
LA  - ru
ID  - VYURU_2013_6_4_a12
ER  - 
%0 Journal Article
%A Y. V. Khudyakov
%T Parallelization of Algorithms for the Solution of Optimal Measurements in View of Resonances
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 122-127
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a12/
%G ru
%F VYURU_2013_6_4_a12
Y. V. Khudyakov. Parallelization of Algorithms for the Solution of Optimal Measurements in View of Resonances. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 122-127. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a12/

[1] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measuring Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq, 2010, no. 16 (192), issue 5, 116–120 | Zbl

[2] Shestakov A. L., Sviridyuk G. A., “Optimal Dynamic Measurement of Distorted Signals”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq, 2011, no. 17 (234), issue 8, 70–75 | Zbl

[3] Keller A. V., Nazarova E. I., “The Problem of Optimal Measurement: a Numerical Solution, the Algorithm of the Program”, J. of News of Irkutsk StateUniversity. Series \flqq Mathematics\frqq, 4:3 (2011), 74–82 | Zbl

[4] Keller A. V., “About the Algorithm for Solving Optimal Control and Hard Control”, Program Products and Systems, 2011, no. 3, 170–174

[5] Keller A. V., Zaharova E. V., “The Problem of Optimal Measurement in View Resonances: the Programm Algorithm and Computer Experiment”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq, 2012, no. 27 (286), issue 13, 58–68 | Zbl