Game Problem Guidance for Integro-Differential System of Volterra Type for Three Persons
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 116-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of guidance of a
dynamic object in space ${\Bbb R}^n$ on a closed set $M$ is
considered. In this problem three players take part, and two of
them make up the coalition that seeks to bring moving point $x(t)$
to the set of at the moment o, and a third player tries to avoid
the meeting, $x(t)$ with the set $M$.
Feature of our work is to describe the evolution of the
object of nonlinear integral differential system, which gives to
the controlled system new essential properties: memory and the
effect of delay on control inputs, which complicates the study,
compared with the case where the evolution of the object is
described by ordinary differential systems. To solve the problem
we assume the existence of a stable bridge in the space of
continuous functions, containing pieces of solutions of the
initial system when using players' coalition of their extreme
strategies defined in the work for any admissible management of
the opposite side. It is assumed that a stable bridge dropped on
the target set $M$ in a fixed moment of time $\theta$.
We prove that the constructed in the work of the extreme
strategy coalition holds the solution (the movement) of the system
at stable bridge, and solves the problem of guidance.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
coalition; memory on the management; extreme strategy; integro-differential system; stable bridge.
                    
                  
                
                
                @article{VYURU_2013_6_4_a11,
     author = {V. L. Pasikov},
     title = {Game {Problem} {Guidance} for {Integro-Differential} {System} of {Volterra} {Type} for {Three} {Persons}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {116--121},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a11/}
}
                      
                      
                    TY - JOUR AU - V. L. Pasikov TI - Game Problem Guidance for Integro-Differential System of Volterra Type for Three Persons JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 116 EP - 121 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a11/ LA - ru ID - VYURU_2013_6_4_a11 ER -
%0 Journal Article %A V. L. Pasikov %T Game Problem Guidance for Integro-Differential System of Volterra Type for Three Persons %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 116-121 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a11/ %G ru %F VYURU_2013_6_4_a11
V. L. Pasikov. Game Problem Guidance for Integro-Differential System of Volterra Type for Three Persons. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 116-121. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a11/
