A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 15-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the methods of regularized traces and Bubnov–Galerkin's method a new method for the solution of inverse problems is developed in spectral characteristics perturbed self-adjoint operators. Simple formulas for calculating the eigenvalues of discrete operators without the roots of the corresponding secular equation are found. Computation of eigenvalues of a perturbed self-adjoint operator can be started with any of their numbers, regardless of whether the previous numbers of eigenvalues are known or not. Numerical calculations for eigenvalues of the Sturm–Liouville's operator show that the proposed formulas for large numbers of eigenvalues give more accurate results than the Bubnov–Galerkin's method. In addition, the obtained formulas allow us to calculate the eigenvalues of perturbed self-adjoint operator with very large numbers, where the use of the Bubnov–Galerkin's method becomes difficult. It can be used in problems of hydrodynamic stability theory, if you want to find signs of the real or imaginary parts of the eigenvalues with large numbers. An integral Fredholm equation of the first kind, restoring the value of the perturbing operator in the nodal points of the sample, is obtained. The method is tested on inverse problems for the Sturm–Liouville's problem. The results of numerous calculations have shown its computational efficiency.
Keywords: the inverse spectral problem; perturbation theory; discrete and self-adjoint operators; eigenvalues; eigenfunctions; incorrectly formulated problems.
@article{VYURU_2013_6_4_a1,
     author = {S. I. Kadchenko},
     title = {A {Numerical} {Method} for {Solving} {Inverse} {Problems} {Generated} by the {Perturbed} {Self-Adjoint} {Operators}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {15--25},
     year = {2013},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/}
}
TY  - JOUR
AU  - S. I. Kadchenko
TI  - A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 15
EP  - 25
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/
LA  - ru
ID  - VYURU_2013_6_4_a1
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%T A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 15-25
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/
%G ru
%F VYURU_2013_6_4_a1
S. I. Kadchenko. A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 15-25. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/

[1] Dubrovskiy V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichiy V. A., “A New Method for the Approximate Calculation of the First Eigenvalues of the Spectral Problem of Hydrodynamic Stability of Poiseuille Flow in a Circular Pipe”, DAN Russia, 380:2 (2001), 160–163 | MR | Zbl

[2] Dubrovskiy V. V., Kadchenko S. I., Kravchenko V. F., Sadovnichiy V. A., “A New Method for the Approximate Calculation of the First Eigenvalues of the Orr–Zomerfeld Spectral Problem”, DAN Russia, 378:4 (2001), 443–446 | MR | Zbl

[3] Sadovnichiy V. A., Dubrovskiy V. V., Kadchenko S. I., Kravchenko V. F., “Calculation of the First Eigenvalues of the Hydrodynamic Stability of Viscous Flow Between Two Rotating Cylinders”, Differential Equations, 36:6 (2000), 742–746 | MR | Zbl

[4] Kadchenko S. I., “Computing the Sums of Rayleigh–Schrödinger Series of Perturbed Self-Adjoint Operators”, Computational Mathematics and Mathematical Physics, 47:9 (2007), 1435–1445 | DOI | MR

[5] Kadchenko S. I., “The method of Regularized Traces”, Bulletin of the South Ural State University. Series «Mathematical Modelling, Programming Computer Software», 2009, no. 37 (170), issue 4, 4–23

[6] Kadchenko S. I., Ryazanova L. S., “A Numerical Method for Finding the Eigenvalues of the Discrete Semi-bounded From Below Operators”, Bulletin of the South Ural State University. Series «Mathematical Modelling, Programming Computer Software», 2011, no. 17 (234), issue 8, 46–51

[7] Sadovnichiy V. A., Operator Theory, M., 1999, 368 pp. | MR

[8] Mihlin S. G., Variational Methods in Mathematical Physics, M., 1970, 510 pp. | MR | Zbl

[9] Demidovich B. P., Foundations of Computational Mathematics, M., 1966, 659 pp. | MR | Zbl

[10] Vasil'eva A. B., Integral Equations, M., 1989, 156 pp.

[11] Verlan' A. F., Sizikov V. S., Integral Equation Methods, Algorithms, Programs, Kiev, 1986, 542 pp. | MR