A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 15-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Based on the methods of
regularized traces and Bubnov–Galerkin's method a new method for
the solution of inverse problems is developed in spectral
characteristics perturbed self-adjoint operators. Simple formulas
for calculating the eigenvalues of discrete operators without the
roots of the corresponding secular equation are found. Computation
of eigenvalues of a perturbed self-adjoint operator can be started
with any of their numbers, regardless of whether the previous
numbers of eigenvalues are known or not. Numerical calculations
for eigenvalues of the Sturm–Liouville's operator show that the
proposed formulas for large numbers of eigenvalues give more
accurate results than the Bubnov–Galerkin's method. In addition,
the obtained formulas allow us to calculate the eigenvalues of
perturbed self-adjoint operator with very large numbers, where the
use of the Bubnov–Galerkin's method becomes difficult. It can be
used in problems of hydrodynamic stability theory, if you want to
find signs of the real or imaginary parts of the eigenvalues with
large numbers.
An integral Fredholm equation of the first kind, restoring the value of the perturbing operator in the nodal points of the sample, is obtained.
The method is tested on inverse problems for the
Sturm–Liouville's problem. The results of numerous calculations
have shown its computational efficiency.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
the inverse spectral problem; perturbation theory; discrete and self-adjoint operators; eigenvalues; eigenfunctions; incorrectly formulated problems.
                    
                  
                
                
                @article{VYURU_2013_6_4_a1,
     author = {S. I. Kadchenko},
     title = {A {Numerical} {Method} for {Solving} {Inverse} {Problems} {Generated} by the {Perturbed} {Self-Adjoint} {Operators}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/}
}
                      
                      
                    TY - JOUR AU - S. I. Kadchenko TI - A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 15 EP - 25 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/ LA - ru ID - VYURU_2013_6_4_a1 ER -
%0 Journal Article %A S. I. Kadchenko %T A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 15-25 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/ %G ru %F VYURU_2013_6_4_a1
S. I. Kadchenko. A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 15-25. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a1/
