On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 5-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			There is the necessity to study integral-algebraic equations if a prototype process has an aftereffect at the analysis of various areas of science. Particularly, a system of interrelated Volterra equations of the first and second kind and algebraic equations can be written as integral-algebraic equation. In this paper linear integral-algebraic equations are considered. We have constructed multistep methods for numerical solutions of IAEs. These methods are based on Adams quadrature formulas and on extrapolation formulas as well. We have proven suggested algorithms convergence. In this paper we show that our multistep methods have a property of self-regularizing; and regularization parameter is the step of a grid, which is connected with the level of accuracy of right-part error of the system under consideration. The results of numerical experiments illustrate theoretical computations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integral-algebraic equations; multistep methods; self-regularization.
                    
                  
                
                
                @article{VYURU_2013_6_4_a0,
     author = {M. V. Bulatov and O. S. Budnikova},
     title = {On {Stable} {Algorithms} for {Numerical} {Solution} of {Integral-Algebraic} {Equations}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a0/}
}
                      
                      
                    TY - JOUR AU - M. V. Bulatov AU - O. S. Budnikova TI - On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 5 EP - 14 VL - 6 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a0/ LA - ru ID - VYURU_2013_6_4_a0 ER -
%0 Journal Article %A M. V. Bulatov %A O. S. Budnikova %T On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 5-14 %V 6 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a0/ %G ru %F VYURU_2013_6_4_a0
M. V. Bulatov; O. S. Budnikova. On Stable Algorithms for Numerical Solution of Integral-Algebraic Equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURU_2013_6_4_a0/
