@article{VYURU_2013_6_3_a8,
author = {E. V. Tabarintseva},
title = {On {Error} {Estimate} of an {Approximate} {Method} to {Solve} an {Inverse} {Problem} for a {Semi-Linear} {Differential} {Equation}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {85--94},
year = {2013},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a8/}
}
TY - JOUR AU - E. V. Tabarintseva TI - On Error Estimate of an Approximate Method to Solve an Inverse Problem for a Semi-Linear Differential Equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 85 EP - 94 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a8/ LA - ru ID - VYURU_2013_6_3_a8 ER -
%0 Journal Article %A E. V. Tabarintseva %T On Error Estimate of an Approximate Method to Solve an Inverse Problem for a Semi-Linear Differential Equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 85-94 %V 6 %N 3 %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a8/ %G ru %F VYURU_2013_6_3_a8
E. V. Tabarintseva. On Error Estimate of an Approximate Method to Solve an Inverse Problem for a Semi-Linear Differential Equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 85-94. http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a8/
[1] Menikhes L. D., “Regularizability of Some Classes of Mappings that are Inverses of Integral Operators”, Mathematical Notes, 65:1–2 (1999), 181–187 | DOI | DOI | MR | Zbl
[2] Menikhes L. D., “On a Sufficient Condition for Regularizability of Linear Inverse Problems”, Mathematical Notes, 82:1–2 (2007), 242–246 | DOI | MR | Zbl
[3] Ivanov V. K., Korolyuk T. I., “Error Estimates for Solutions of Incorrectly Posed Linear Problems”, USSR Computational Mathematics and Mathematical Physics, 9:1 (1969), 35–49 | DOI | Zbl
[4] V. P. Tanana, Methods for solution of nonlinear operator equations, VSP, Utrecht, 1997 | MR
[5] Vasin V. V., Ageev A. L., Ill-Posed Problems with a Priori Information, VSP, Utrecht, 1995 | MR | MR | Zbl
[6] Henry D., Geometric Theory of Semi-Linear Parabolic Equations, Springer, Berlin, 1981 | MR | MR
[7] Tabarintseva E. V., “On an Estimate for the Modulus of Continuity of a Nonlinear Inverse Problem”, Proceedings of the Institute of Mathematics and Mechanics, 19, no. 1, 2013, 253–257 (in Russian) | MR
[8] Tanana V. P., Tabarintseva E. V., “On an Approximation Method of a Discontinuous Solution of an Ill-Posed Problem”, Journal of Applied and Industrial Mathematics, 8:1 (2005), 129–142 (in Russian) | MR
[9] Tabarintseva E. V., “On Error Estimation for the Quasi-Inversion Method for Solving a Semi-Linear Ill-Posed Problem”, Numerical Analysis and Applications, 8:3 (2005), 259–271 (in Russian) | Zbl
[10] Tanana V. P., Tabarintseva E. V., “On a method to approximate discontinuous solutions of nonlinear inverse problems”, Numerical Analysis and Applications, 10:2 (2007), 221–228 (in Russian) | MR | Zbl