Optimal solutions for inclusions of geometric Brownian motion type with mean derivatives
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 38-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The idea of mean derivatives of stochastic processes was suggested by E. Nelson in 60-th years of XX century. Unlike ordinary derivatives, the mean derivatives are well-posed for a very broad class of stochastic processes and equations with mean derivatives naturally arise in many mathematical models of physics (in particular, E. Nelson introduced the mean derivatives for the needs of Stochastic Mechanics, a version of quantum mechanics). Inclusions with mean derivatives is a natural generalization of those equations in the case of feedback control or in motion in complicated media. The paper is devoted to a brief introduction into the theory of equations and inclusions with mean derivatives and to investigation of a special type of such inclusions called inclusions of geometric Brownian motion type. The existence of optimal solutions maximizing a certain cost criterion, is proved.
Keywords: mean derivatives; stochastic differential inclusions; optimal solution.
@article{VYURU_2013_6_3_a3,
     author = {Yu. E. Gliklikh and O. O. Zheltikova},
     title = {Optimal solutions for inclusions of geometric {Brownian} motion type with mean derivatives},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {38--50},
     year = {2013},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a3/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
AU  - O. O. Zheltikova
TI  - Optimal solutions for inclusions of geometric Brownian motion type with mean derivatives
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 38
EP  - 50
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a3/
LA  - en
ID  - VYURU_2013_6_3_a3
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%A O. O. Zheltikova
%T Optimal solutions for inclusions of geometric Brownian motion type with mean derivatives
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 38-50
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a3/
%G en
%F VYURU_2013_6_3_a3
Yu. E. Gliklikh; O. O. Zheltikova. Optimal solutions for inclusions of geometric Brownian motion type with mean derivatives. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 38-50. http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a3/

[1] Nelson E., “Derivation of the Schrödinger Equation from Newtonian Mechanics”, Phys. Reviews, 150 (1966), 1079–1085 | DOI

[2] Nelson E., Dynamical Theory of Brownian Motion, Princeton University Press, Princeton, 1967, 142 pp. | MR

[3] Nelson E., Quantum Fluctuations, Princeton University Press, Princeton, 1985, 147 pp. | MR | Zbl

[4] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer-Verlag, London, 2011, 460 pp. | MR | Zbl

[5] Azarina S. V., Gliklikh Yu. E., “Differential Inclusions with Mean Derivatives”, Dynamic Systems and Applications, 16 (2007), 49–72 | MR

[6] Azarina S. V., Gliklikh Yu. E., “Inclusions with Mean Derivatives for Processes of Geometric Brownian Motion Type and Their Applications [Vklyucheniya s proizvodnymi v srednem dlya protsessov tipa geometricheskogo brounovskogo dvizheniya i ikh prilozheniya]”, Seminar on Global and Stochastic Analysis, 4, 2009, 3–8 | MR | Zbl

[7] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Introduction to the Theory of Multi-Valued Mappings and Differential Inclusions, KomKniga, M., 2005, 213 pp.

[8] Gliklikh Yu. E., Global and Stochastic Analysis in Problems of Mathematical Physics, KomKniga, M., 2005, 416 pp.

[9] Gihman I. I., Skorohod A. V., Theory of Stochastic Processes, v. 3, Springer-Verlag, N. Y., 1979, 496 pp. ; I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975, 496 pp. | Zbl | MR

[10] Kantorovich L. V., Akilov G. P., Functional analysis, Pergamon Press, Oxford, 1982, 742 pp. ; Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 742 pp. | MR | Zbl | MR | Zbl

[11] Parthasarathy K. R., Introduction to Probability and Measure, Springer-Verlag, N.Y., 1978, 343 pp. ; K. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988, 343 pp. | MR | MR

[12] Gliklikh Yu. E., Obukhovskiĭ A. V., “Stochastic Differential Inclusions of Langevin Type on Riemannian Manifolds”, Discussiones Mathematicae DICO, 21 (2001), 173–190 | MR | Zbl

[13] Yosida K., Functional Analysis, Springer-Verlag, Berlin, 1965, 624 pp.; K. Iosida, Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[14] Billingsley P., Convergence of Probability Measures, Wiley, N. Y., 1969, 351 pp. ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR | MR