On factorization of a differential operator arising in fluid dynamics
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 104-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Spectral properties of linear operators are very important in stability analysis of dynamical systems. The paper studies the non-selfadjoint second order differential operator that originated from a steady state stability problem in dynamic of viscous Newtonian fluid on the inner surface of horizontally rotating cylinder in the presence of gravitational field. The linearization of the thin liquid film flow in the lubrication limit about the uniform coating steady state results into the operator which domain couples two subspaces spanned by positive and negative Fourier exponents which are not invariant subspaces of the operator. We prove that the operator admits factorization and use this new representation of the operator to prove compactness of its resolvent and to find its domain.
Keywords: factorization, lubrication approximation, fluid mechanics, forward-backward heat equation.
@article{VYURU_2013_6_3_a10,
     author = {M. Chugunova and V. Strauss},
     title = {On factorization of a differential operator arising in fluid dynamics},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {104--111},
     year = {2013},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a10/}
}
TY  - JOUR
AU  - M. Chugunova
AU  - V. Strauss
TI  - On factorization of a differential operator arising in fluid dynamics
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 104
EP  - 111
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a10/
LA  - en
ID  - VYURU_2013_6_3_a10
ER  - 
%0 Journal Article
%A M. Chugunova
%A V. Strauss
%T On factorization of a differential operator arising in fluid dynamics
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 104-111
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a10/
%G en
%F VYURU_2013_6_3_a10
M. Chugunova; V. Strauss. On factorization of a differential operator arising in fluid dynamics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 3, pp. 104-111. http://geodesic.mathdoc.fr/item/VYURU_2013_6_3_a10/

[1] Azizov T. Ya., Iokhvidov I. S., Linear Operators in Spaces with Indefinite Metric, Wiley, N. Y., 1989 | MR | Zbl

[2] Benilov E. S., O'Brien S. B. G., Sazonov I. A., “A New Type of Instability: Explosive Disturbances in a Liquid Fild Inside a Rotating Horizontal Cylinder”, J. Fluid Mech., 497 (2003), 201–224 | DOI | MR | Zbl

[3] Benilov E. S., Kopteva N., O'Brien S. B. G., “Does Surface Tension Stabilise Liquid Films Inside a Rotating Horizontal Cylinder”, Q. J. Mech. Appl. Math., 58 (2005), 158–200 | MR

[4] Boulton L., Levitin M., Marletta M., “On a Class of Non-self-adjoint Periodic Eigenproblems with Boundary and Interior Singularities”, J. of Differential Equations, 249:12 (2010), 3081–3098 | DOI | MR | Zbl

[5] Chugunova M., Karabash I. M., Pyatkov S. G., “On the Nature of Ill-posedness of the Forward-Backward Heat Equation”, Integral Equations and Operator Theory, 65 (2009), 319–344 | DOI | MR | Zbl

[6] Chugunova M., Pelinovsky D., “Spectrum of a Non-Self-Adjoint Operator Associated with the Periodic Heat Equation”, J. Math. Anal. Appl., 342 (2008), 970–988 | DOI | MR | Zbl

[7] Chugunova M., Strauss V., “Factorization of the Indefinite Convection-Diffusion Operator”, C. R. Math. Rep. Acad. Sci. Canada, 30:2 (2008), 40–47 | MR | Zbl

[8] Davies E. B., “An Indefinite Convection-Diffusion Operator”, LMS J. Comp. Math., 10 (2007), 288–306 | DOI | MR | Zbl

[9] Weir J., “An Indefinite Convection-Diffusion Operator with Real Spectrum”, Appl. Math. Lett., 22 (2008), 280–283 | DOI | MR