Mots-clés : Sobolev type equation
@article{VYURU_2013_6_2_a9,
author = {N. D. Ivanova},
title = {Inverse problem for a linearized quasi-stationary phase field model with degeneracy},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {128--132},
year = {2013},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/}
}
TY - JOUR AU - N. D. Ivanova TI - Inverse problem for a linearized quasi-stationary phase field model with degeneracy JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 128 EP - 132 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/ LA - en ID - VYURU_2013_6_2_a9 ER -
%0 Journal Article %A N. D. Ivanova %T Inverse problem for a linearized quasi-stationary phase field model with degeneracy %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 128-132 %V 6 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/ %G en %F VYURU_2013_6_2_a9
N. D. Ivanova. Inverse problem for a linearized quasi-stationary phase field model with degeneracy. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 128-132. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/
[1] Urazaeva A. V., Fedorov V. E., “Prediction-Control Problem for Some Systems of Equations of Fluid Dynamics”, Differential Equations, 44:8 (2008), 1147–1156 | DOI | MR | Zbl
[2] Urazaeva A. V., Fedorov V. E., “On the Well-Posedness of the Prediction Control Problem for Certain Systems of Equations”, Mathematical Notes, 25:3 (2009), 426–436 | DOI | MR
[3] Fedorov V. E., Urazaeva A. V., “Linear Evolutionary Inverse Problem for Sobolev Type Equations”, Nonclassical Mathematical Phisics Equations, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010, 293–310
[4] Fedorov V. E., Ivanova N. D., “Nonlinear Evolutionary Inverse Problem for Certain Sobolev Type Equations”, Siberian Electronic Mathematical News, 2011, P.I. \flqq Theory and Inverse and Ill-Posed Problems Numerical Solving Methods\frqq, 363–378 (accessed 8 February 2013) http://semr.math.nsc.ru/v8/c182-410.pdf
[5] Ivanova N. D., Fedorov V. E., Komarova K. M., “Nonlinear Evolutionary Inverse Problem for the Oskolkov System, Linearized in a Stationary Solution Neighbourhood”, Chelyabinsk State University bulletin. Mathematics. Mechanics. Informatics, 13:26 (280) (2012), 50–71
[6] Fedorov V. E., “Degenerate Strongly Continuous Operator Semigroups”, Algebra and Analysis, 12:3 (2000), 173–200 | MR
[7] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003 | MR | Zbl