Inverse problem for a linearized quasi-stationary phase field model with degeneracy
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 128-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse problem for a linearized quasi-stationary phase field model is considered. The inverse problem is reduced to a linear inverse problem for the first order differential equation in a Banach space with a degenerate operator at the derivative and an overdetermination condition on the degeneracy subspace. The unknown parameter in the problem dependens on the source time function. The theorem of existence and uniqueness of classical solutions is proved by methods of degenerate operator semigroup theory at some additional conditions on the operator. General results are applied to the original inverse problem.
Keywords: inverse problem, phase field model, degenerate operator, operator semigroup, Banach spaces.
Mots-clés : Sobolev type equation
@article{VYURU_2013_6_2_a9,
     author = {N. D. Ivanova},
     title = {Inverse problem for a linearized quasi-stationary phase field model with degeneracy},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {128--132},
     year = {2013},
     volume = {6},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/}
}
TY  - JOUR
AU  - N. D. Ivanova
TI  - Inverse problem for a linearized quasi-stationary phase field model with degeneracy
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 128
EP  - 132
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/
LA  - en
ID  - VYURU_2013_6_2_a9
ER  - 
%0 Journal Article
%A N. D. Ivanova
%T Inverse problem for a linearized quasi-stationary phase field model with degeneracy
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 128-132
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/
%G en
%F VYURU_2013_6_2_a9
N. D. Ivanova. Inverse problem for a linearized quasi-stationary phase field model with degeneracy. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 128-132. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a9/

[1] Urazaeva A. V., Fedorov V. E., “Prediction-Control Problem for Some Systems of Equations of Fluid Dynamics”, Differential Equations, 44:8 (2008), 1147–1156 | DOI | MR | Zbl

[2] Urazaeva A. V., Fedorov V. E., “On the Well-Posedness of the Prediction Control Problem for Certain Systems of Equations”, Mathematical Notes, 25:3 (2009), 426–436 | DOI | MR

[3] Fedorov V. E., Urazaeva A. V., “Linear Evolutionary Inverse Problem for Sobolev Type Equations”, Nonclassical Mathematical Phisics Equations, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2010, 293–310

[4] Fedorov V. E., Ivanova N. D., “Nonlinear Evolutionary Inverse Problem for Certain Sobolev Type Equations”, Siberian Electronic Mathematical News, 2011, P.I. \flqq Theory and Inverse and Ill-Posed Problems Numerical Solving Methods\frqq, 363–378 (accessed 8 February 2013) http://semr.math.nsc.ru/v8/c182-410.pdf

[5] Ivanova N. D., Fedorov V. E., Komarova K. M., “Nonlinear Evolutionary Inverse Problem for the Oskolkov System, Linearized in a Stationary Solution Neighbourhood”, Chelyabinsk State University bulletin. Mathematics. Mechanics. Informatics, 13:26 (280) (2012), 50–71

[6] Fedorov V. E., “Degenerate Strongly Continuous Operator Semigroups”, Algebra and Analysis, 12:3 (2000), 173–200 | MR

[7] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln, 2003 | MR | Zbl