Development, Implementation and Analysis of Cryptographic Protocol for Digital Signatures Based on Elliptic Curves
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 120-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cryptographic primitives based on elliptic curves have become very popular recently. The main reason is that elliptic curves can build many examples of finite Abelian groups with good parameters suitable for cryptographic purposes. In addition, elliptical curves are easy to implement on a computer, and the cryptographic strength can be achieved by choosing the characteristics of the finite field. Software cryptographic protocol for digital signature based on elliptic curves is designed and implemented. The protocol encrypts messages, forming a digital signature, message transmission and decoding at the receiver. Resistant cryptographic protocol is analyzed by several methods. A diagram of dependence of cryptographic security of the protocol on finite field characteristic, over which the elliptic curve is built, is given in the paper. The program in C++ programming environment Visual C++ 2010 with the support of large numbers GMP library is written. The program allows you to encrypt and decrypt the messages according to the generated protocol. It is also the instrument for transmission and receiving the messages with high degree of cryptographic strength and at reasonable rate.
Keywords: cryptography, cryptographic protocols, elliptic curves, the cryptographic strength.
@article{VYURU_2013_6_2_a8,
     author = {S. G. Chekanov},
     title = {Development, {Implementation} and {Analysis} of {Cryptographic} {Protocol} for {Digital} {Signatures} {Based} on {Elliptic} {Curves}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {120--127},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a8/}
}
TY  - JOUR
AU  - S. G. Chekanov
TI  - Development, Implementation and Analysis of Cryptographic Protocol for Digital Signatures Based on Elliptic Curves
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 120
EP  - 127
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a8/
LA  - ru
ID  - VYURU_2013_6_2_a8
ER  - 
%0 Journal Article
%A S. G. Chekanov
%T Development, Implementation and Analysis of Cryptographic Protocol for Digital Signatures Based on Elliptic Curves
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 120-127
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a8/
%G ru
%F VYURU_2013_6_2_a8
S. G. Chekanov. Development, Implementation and Analysis of Cryptographic Protocol for Digital Signatures Based on Elliptic Curves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 120-127. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a8/

[1] The GNU Multiple Precision Arithmetic Library (data obrascheniya: 7.09.2013) http://gmplib.org

[2] Cheremushkin A. V., Cryptographic Protocols: Basic Properties and Vulnerability, Akademiya, M., 2009

[3] Kobliz N., The Course of Number Theory and Cryptography, TVP, M., 2001

[4] J. Kelsey, S. Lucks, “Collisions and Near-Collisions for Reduced-Round Tiger”, Proceedings of Fast Software Encryption, FSE, Graz, 2006 | Zbl

[5] Tiger: a Fast New Cryptographic Hash Function (Designed in 1995), (data obrascheniya: 7.09.2013) http://www.cs.technion.ac.il/b̃iham/Reports/Tiger

[6] F. Mendel, V. Rijmen, Cryptanalysis of the Tiger Hash Function, Springer, Berlin; ASIACRYPT, Heidelberg, 2007 | MR | Zbl

[7] AVISPA (data obrascheniya: 7.09.2013) http://www.avispa-project.org

[8] Bolotov A. A., Gashkov S. B., Frolov A. B., Chasovskikh A. A., Algorithmic Foundations of Elliptic Cryptography, MEI, M., 2000

[9] Romanets U. V., Timofeev P. A., Shangin V. F., The Protection of Information in Computer Systems and Networks, Radio i Svyaz', M., 2001

[10] Bondarenko M. F., Gorbenko I. D., Kachko E. G., “The Essence and Results of Research of the Properties of Perspective Digital Signature Standard X9.62-1998 and Key Distribution X9.63-199X on Elliptic Curves”, Radiotechnique, 2000, no. 114, 15–24