Approach to Solve the Set of Linear Algebraic Equations with Interval Uncertainty of Data Given
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 108-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The set of linear algebraic equations with interval matrixes of coefficients and interval right part is considered in the paper. The pseudosolution for such systems is introduced. The existence of pseudosolution for all interval sets of algebraic linear equations is proved in the paper, the way for pseudosolution analysis is shown on the basis of the solution the corresponding linear programming problem. It is necessary to use computation guaranteeing sufficient accuracy over standard data types of programming languages because of obtained problem degeneracy. Simplex method coupled with accurate rational-fractional computation gives effective solution to the problem. Coarse-grained parallelism for distributed computer systems with MPI is the instrument of realization. CUDA C software engineering is applied for accurate rational-fractional calculations.
Keywords: interval set of linear equations, linear programming
Mots-clés : pseudosolution of interval equation set, exact comtutations.
@article{VYURU_2013_6_2_a7,
     author = {A. V. Panyukov and V. A. Golodov},
     title = {Approach to {Solve} the {Set} of {Linear} {Algebraic} {Equations} with {Interval} {Uncertainty} of {Data} {Given}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {108--119},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a7/}
}
TY  - JOUR
AU  - A. V. Panyukov
AU  - V. A. Golodov
TI  - Approach to Solve the Set of Linear Algebraic Equations with Interval Uncertainty of Data Given
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 108
EP  - 119
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a7/
LA  - ru
ID  - VYURU_2013_6_2_a7
ER  - 
%0 Journal Article
%A A. V. Panyukov
%A V. A. Golodov
%T Approach to Solve the Set of Linear Algebraic Equations with Interval Uncertainty of Data Given
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 108-119
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a7/
%G ru
%F VYURU_2013_6_2_a7
A. V. Panyukov; V. A. Golodov. Approach to Solve the Set of Linear Algebraic Equations with Interval Uncertainty of Data Given. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 108-119. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a7/

[1] R. B. Kearfott, M. T. Nakao, A. Neumaie, S. M. Rump, S. P. Shary, P. van Hentenryck, “Standardized Notation in Interval Analysis”, Optimization methods and their applications, Proc. XIII Baikal International School-seminar (Irkutsk, Baikal, July 2–8, 2005), v. 4, Interval analysis, Institute of Energy Systems SB RAS, Irkutsk, 2005, 106–113

[2] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[3] S. P. Shary, “Solving the Linear Interval Tolerance Problem”, Mathematics and Computers in Simulation, 39 (1996), 53–85 | DOI | MR

[4] S. P. Shary, “A New Technique in Systems Analysis under Interval Uncertainty and Ambiguity”, Reliable Computing, 8:5 (2002), 321–418 | DOI | MR | Zbl

[5] Shary S. P., “An Interval Linear Tolerance Problem”, Automation and Remote Control, 65:10 (2004), 1653–1666 | DOI | MR | Zbl

[6] A. V. Lakeyev, V. Kreinovich, “Optimal Solution of Interval Linear Systems is Intractable (NP-Hard)”, Interval Computations, 1993, no. 1, 6–14 | MR | Zbl

[7] A. V. Lakeyev, V. Kreinovich, “NP-Hard Classes of Linear Algebraic Systems with Uncertainties”, Reliable Computing, 1997, no. 3, 51–81 | DOI | MR | Zbl

[8] J. Rohn, “Inner Solutions of Linear Interval Systems”, Interval Mathematics, 1985, 157–158 | MR

[9] Stecjuk P. I., “Subgradient Methods with Space Trasform for Ravine Functions”, \flqq Recent Developments in Applied Mathematics and Mechanics: Theory, Experiment and Practice, International Conference. Devoted to the 90th Anniversary of Academician N. N. Yanenko\frqq, 2011 (accessed 25 December 2013) http://conf.nsc.ru/niknik-90/ru/reportview/37828

[10] Interval Analysis and Application, (accessed 25 December 2013) http://www.nsc.ru/interval

[11] Ivanov V. K., “About Linear Ill-Conditioned Problems”, DAN USSR, 145:2 (1962), 270–272 | Zbl

[12] Tihonov A. N., Arsenin V. Ja., Ill-Posed Problems-Solving Procedures, Nauka, M., 1979, 285 pp. | MR

[13] Panyukov A. V., Golodov V. A., “Software Engendering for Algorithm of Solving a Linear Equation Set under Interval Uncertainty”, Parallel Computing and Control Problems, Sixth international conference PACO'2012 (Moscow, Russia, October 24–26, 2012), v. 2, 155–166

[14] A. V. Panyukov, M. I. Germanenko, V. V. Gorbik, Biblioteka klassov \flqq Exact Computation\frqq, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2009612777 ot 29 maya 2009 g.; Программы для ЭВМ, базы данных, топологии интегральных микросхем: офиц. бюл. Рос. агентства по патентам и товарным знакам, 2009, No 3, 251

[15] The GNU MP Bignum Library (data obrascheniya: 11 fevralya 2013) http://gmplib.org/

[16] Panyukov A. V., Gorbik V. V., “Using Massively Parallel Computations for Absolutely Precise Solution of the Linear Programming Problems”, Automation and Remote Control, 73:2 (2012), 276–290 | DOI | MR | Zbl

[17] Schrijver A., Theory of Linear and Integer Programming, Wiley, 1998, 484 pp. | MR | MR

[18] Golodov V. A., “Distibuted Symbolic Rational Calculations with the x86 and x64 Processors”, Parallel'nye vychislitel'nye tehnologii, Proc. Parallel Computational Technologies (PCT), SUSU, Chelyabinsk, 2012, 719

[19] Panyukov A. V., Gorbik V. V., “The Parallel Symplex-Method Achievements for Errorless Solving of Linear programming problems”, Bulletin of the South Ural State university. Series \flqq Mathematical Modelling, Programming Computer software\frqq. Issue 9, 2011, no. 25 (242), 107–118 (in Russian) | Zbl