On the Model Motions in Control Problem with Functional Constraints on Disturbances
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 62-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A control problem for a system described by an ordinary differential equation is considered. It is suggested that the values of the control and of disturbance belong compact sets at every instant. It is also assumed that the disturbance meets some additional functional constraints showing the nature of the problem under consideration. The control quality is assessed by the functional continuous in the metrics of uniform convergence over the set of phase paths of the system. As it is previously stated, a strategy with full memory solves the control problem under compact constraints to the disturbance as well as under other functional constraints which are reduced to them. At the same time, the strategies constructed for the cases above are not universal, i.e. they depend on the starting position of the system motion. The question of possibility to solve the control problem with functional constraints in a narrower (classic) set of strategies (positional strategies) remains open. This paper gives the construction of the universal optimal strategy using a model of the control system in the feedback path. The examples that lead to the expansion of the class of solution strategies up to strategies with full memory are also given.
Keywords: optimal guarantee, strategies with full memory, functional constraints.
@article{VYURU_2013_6_2_a4,
     author = {D. A. Serkov},
     title = {On the {Model} {Motions} in {Control} {Problem} with {Functional} {Constraints} {on~Disturbances}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {62--73},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a4/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - On the Model Motions in Control Problem with Functional Constraints on Disturbances
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 62
EP  - 73
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a4/
LA  - ru
ID  - VYURU_2013_6_2_a4
ER  - 
%0 Journal Article
%A D. A. Serkov
%T On the Model Motions in Control Problem with Functional Constraints on Disturbances
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 62-73
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a4/
%G ru
%F VYURU_2013_6_2_a4
D. A. Serkov. On the Model Motions in Control Problem with Functional Constraints on Disturbances. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 62-73. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a4/

[1] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, N. Y., 1988, 517 pp. | MR | MR | Zbl | Zbl

[2] Subbotin A. I., Chentsov A. G., Optimization of Guarantee in Control Problems, Nauka, M., 1981, 288 pp. | MR

[3] Barabanova N. N., Subbotin A. I., “On Continuous Evasion Strategies in Game Problems on the Encounter of Motions: PMM”, Journal of Applied Mathematics and Mechanics, 34:5 (1970), 796–803 | MR | Zbl

[4] Barabanova N. N., Subbotin A. I., “On Classes of Strategies in Differential Games of Evasion of Contact: PMM”, Journal of Applied Mathematics and Mechanics, 35:3 (1971), 385–395 | MR | Zbl

[5] A. V. Kryazhimskii, “The Problem of Optimization of the Ensured Result: Unimprovability of Full-Memory Strategies”, Constantin Caratheodory: An International Tribute, ed. T. M. Rassias, World Scientific, 1991 | MR

[6] Krasovskii N. N., “Programm Absorption in Differential Games”, Reports to Academy of Science of USSR, 201:3 (1971), 270–272 | MR

[7] Krasovskii N. N., Subbotin A. I., “An Alternative for the Game Problem of Convergence: PMM”, Journal of Applied Mathematics and Mechanics, 34:6 (1970), 1005–1022 | MR

[8] Serkov D. A., “Guaranteed Control under the Functional Restrictions on Disturbance”, Mathematical Game Theory and Its Applications, 4:2 (2012), 71–95 | Zbl

[9] Warga J., Optimal Control of Differential and Functional Equations, Academic Press, N. Y., 1972, 544 pp. | MR | MR | Zbl

[10] Kryazhimskii A. V., Osipov Yu. S., “On the Control Modeling in Dynamic System”, Proceedings of the Academy of Sciences of the USSR. Tech. Cybernetics, 1983, no. 2, 51–60 | MR

[11] Yu. S. Osipov, A. V. Kryazhimskii, Inverse Problem of Ordinary Differential Equations: Dynamical Solutions, Gordon and Breach, London, 1995 | MR | Zbl

[12] Subbotina N. N., “Universal Optimal Strategies in Positional Differential Games”, Differential Equation, 19:11 (1983), 1890–1896 | MR | Zbl

[13] Chentsov A. G., “Programming Constructs in Differential Games with Information Memory”, Optimal Control of Systems with Uncertain Information, Sverdlovsk, 1980, 141–144 | MR