@article{VYURU_2013_6_2_a3,
author = {A. A. Patrushev},
title = {Mathematical {Modelling} in {Piecewise-Uniform} {Invironment} {Based} on the {Solution} of the {Markushevich} {Boundary} {Problem} in the {Class} of {Automorphic} {Functions}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {49--61},
year = {2013},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a3/}
}
TY - JOUR AU - A. A. Patrushev TI - Mathematical Modelling in Piecewise-Uniform Invironment Based on the Solution of the Markushevich Boundary Problem in the Class of Automorphic Functions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 49 EP - 61 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a3/ LA - ru ID - VYURU_2013_6_2_a3 ER -
%0 Journal Article %A A. A. Patrushev %T Mathematical Modelling in Piecewise-Uniform Invironment Based on the Solution of the Markushevich Boundary Problem in the Class of Automorphic Functions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 49-61 %V 6 %N 2 %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a3/ %G ru %F VYURU_2013_6_2_a3
A. A. Patrushev. Mathematical Modelling in Piecewise-Uniform Invironment Based on the Solution of the Markushevich Boundary Problem in the Class of Automorphic Functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 49-61. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a3/
[1] Vekua I. N., Generalized Analytic Functions, Fizmatgiz, M., 1959, 560 pp. | MR | Zbl
[2] Ford R., Automorphic Functions, ONTI, M., 1936, 340 pp.
[3] Patrushev A. A., Adukov V. M., “Algorithm of Exact Solution of Generalized Four-Element Riemann–Hilbert Boundary Problem with Rational Coefficiets and Its Programm Realization”, Bulletin of the South Ural State University. Series «Mathematical Modelling, Programming Computer Software». Issue 6, 2010, no. 35 (211), 4–12
[4] Patrushev A. A., “The Generalized Hilbert–Riemann Boundery Problem on the Singular Circle”, News of Smolensk State University, 2010, no. 4, 82–97
[5] Patrushev A. A., Adukov V. M., “On Explicit and Exact Solution of the Markushevich Boundary Problem for Circle”, Proceedings of Saratov State University. Series«Mathematics. Mechanics. Informatics», 11:2 (2011), 9–20
[6] Patrushev A. A., “The Markushevich problem in the class of automorphic functions for arbitrary circle”, Bulletin of the South Ural State University. Series «Mathematics. Physics. Chemistry». Issue 4, 2011, no. 10(227), 29–37 | Zbl
[7] Silvestrov V. V., Chibrikova L. I., “The Issue of Efficiency of Solving the Boundary Value the Tasks of the Riemann for Automorphic Functions”, Russian Mathematics (Izvestiya VUZ. Matematika), 1978, no. 12, 117–121 | MR | Zbl
[8] Zverovich E. I., “Boundary Value Problems in the Theory of Analytic Functions in Holder Classes on Riemann Surfaces”, Russian Mathematical Surveys, 26:1 (1971), 117–192 | DOI | MR | Zbl
[9] Chibrikova L. I., “Boundary Value Problem of Riemann for Automorphic Functions in the the Case of Groups with Two Invariants”, Russian Mathematics (Izvestiya VUZ. Matematika), 1961, no. 6, 121–131
[10] Silvestrov V. V., “Boundary Value Problem of Hilbert's for One Infinite the Field in the Class of Automorphic Functions”, Proceedings of the Seminar on Boundary Value Problems, Publisher Kazan Gos. Univ., Kazan', 1980, 180–194 | Zbl
[11] Gakhov F. D., “Degenerate Cases of Singular Integral Equations with Cauchy's Kernel”, Differential Equations, 2:2 (1966), 533–544