Strongly continuous operator semigroups. Alternative approach
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 40-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Inheriting and continuing the tradition, dating back to the Hill–Iosida–Feller–Phillips–Miyadera theorem, the new way of construction of the approximations for strongly continuous operator semigroups with kernels is suggested in this paper in the framework of the Sobolev type equations theory, which experiences an epoch of blossoming. We introduce the concept of relatively radial operator, containing condition in the form of estimates for the derivatives of the relative resolvent, the existence of $C_0$-semigroup on some subspace of the original space is shown, the sufficient conditions of its coincidence with the whole space are given. The results are very useful in numerical study of different nonclassical mathematical models considered in the framework of the theory of the first order Sobolev type equations, and also to spread the ideas and methods to the higher order Sobolev type equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
strongly continuous semigroups of operators with kernals, approximations of semigroups.
Mots-clés : Sobolev type equation
                    
                  
                
                
                Mots-clés : Sobolev type equation
@article{VYURU_2013_6_2_a2,
     author = {A. A. Zamyshlyaeva},
     title = {Strongly continuous operator semigroups. {Alternative} approach},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {40--48},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Zamyshlyaeva TI - Strongly continuous operator semigroups. Alternative approach JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 40 EP - 48 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a2/ LA - en ID - VYURU_2013_6_2_a2 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %T Strongly continuous operator semigroups. Alternative approach %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 40-48 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a2/ %G en %F VYURU_2013_6_2_a2
A. A. Zamyshlyaeva. Strongly continuous operator semigroups. Alternative approach. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 40-48. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a2/
