The Approximations for Degenerate $C_0$-semigroup
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 133-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results from the theory of Sobolev type equations have been actively used to measure the dynamically distorted signals recently. The formulas obtained for relatively $p$-radial case of Sobolev type equations are used for the numerical solution of such problems. Hille–Widder–Post approximations for the operators of strongly continuous resolving semigroup for homogeneous equations are considered in the article. The authors show that a simpler formula can be used as approximations of operators of a resolving semigroup. The article consists of introduction and two parts. The information regarding the relative resolutions and theories of relatively $p$-radial operators are given in the first part. The approximation formulas are covered in the second part.
Mots-clés : Sobolev type equation
Keywords: resolving semigroup of operators, Hille–Widder–Post approximations.
@article{VYURU_2013_6_2_a10,
     author = {M. A. Sagadeyeva and A. N. Shulepov},
     title = {The {Approximations} for {Degenerate} $C_0$-semigroup},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {133--137},
     year = {2013},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a10/}
}
TY  - JOUR
AU  - M. A. Sagadeyeva
AU  - A. N. Shulepov
TI  - The Approximations for Degenerate $C_0$-semigroup
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 133
EP  - 137
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a10/
LA  - ru
ID  - VYURU_2013_6_2_a10
ER  - 
%0 Journal Article
%A M. A. Sagadeyeva
%A A. N. Shulepov
%T The Approximations for Degenerate $C_0$-semigroup
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 133-137
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a10/
%G ru
%F VYURU_2013_6_2_a10
M. A. Sagadeyeva; A. N. Shulepov. The Approximations for Degenerate $C_0$-semigroup. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 133-137. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a10/

[1] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc,, N. Y.–Basel–Hong Kong, 1999, 236 pp. | MR | Zbl

[2] S. G. Pyatkov, Operator Theory. Nonclassical Problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 353 pp. | MR | Zbl

[3] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston, 2003, 216 pp. | MR | Zbl

[4] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, de Gruyter, Berlin, 2011, 648 pp. | MR | Zbl

[5] Shestakov A. L., Sviridyuk G. A., “A New Approach to Measurement Dynamically Perturbed Signals”, Bulletin of the South Ural State University. Series \flqq Mathematical Modelling, Programming Computer Software\frqq. Issue 5, 2010, no. 16 (192), 88–92

[6] Shestakov A. L., Keller A. V., Nazarova E. I., “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 2012, no. 1, 107–115 | Zbl

[7] Sviridyuk G. A., “Linear Equations of Sobolev Type and Strongly Continious Semigroups of Resolving Operators with Kernels”, Dokl. Akad. Nauk USSR, 337:5 (1994), 581–584 | Zbl