The Initial-Finite Problems for Nonclassical Models of Mathematical Physics
    
    
  
  
  
      
      
      
        
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 5-24
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The models of Mathematical Physics, whose representation in the form of equations or systems of partial differential equations do not fit one of the classical types such as elliptic, parabolic or hyperbolic, are called nonclassical. The article provides an overview of the author's results in the field of nonclassical models of Mathematical Physics for which the initial-finite problems, generalizing the Cauchy and Showalter, Sidorov conditions, are considered. Basic method for the research is the Sviridyuk relative spectrum theory. Abstract results are illustrated by the specific initial-finite problems for the equations and systems of equations in partial derivatives occurring in applications, namely, the theory of filtration, fluid dynamics and mesoscopic theory, considered on the sets of different geometrical structure.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonclassical models of Mathematical Physics, Plotnikov model, the Navier–Stokes system, the Barenblatt–Zheltov–Kochina equation, the (multipoint) initial-finite problems, the relative spectrum.
                    
                  
                
                
                @article{VYURU_2013_6_2_a0,
     author = {S. A. Zagrebina},
     title = {The {Initial-Finite} {Problems} for {Nonclassical} {Models} of {Mathematical} {Physics}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a0/}
}
                      
                      
                    TY - JOUR AU - S. A. Zagrebina TI - The Initial-Finite Problems for Nonclassical Models of Mathematical Physics JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 5 EP - 24 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a0/ LA - ru ID - VYURU_2013_6_2_a0 ER -
%0 Journal Article %A S. A. Zagrebina %T The Initial-Finite Problems for Nonclassical Models of Mathematical Physics %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 5-24 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a0/ %G ru %F VYURU_2013_6_2_a0
S. A. Zagrebina. The Initial-Finite Problems for Nonclassical Models of Mathematical Physics. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 2, pp. 5-24. http://geodesic.mathdoc.fr/item/VYURU_2013_6_2_a0/
