@article{VYURU_2013_6_1_a6,
author = {V. S. Surov and I. V. Berezansky},
title = {The {New} {Hyperbolic} {Models} of {Heterogeneous} {Environments}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {72--84},
year = {2013},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a6/}
}
TY - JOUR AU - V. S. Surov AU - I. V. Berezansky TI - The New Hyperbolic Models of Heterogeneous Environments JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 72 EP - 84 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a6/ LA - ru ID - VYURU_2013_6_1_a6 ER -
%0 Journal Article %A V. S. Surov %A I. V. Berezansky %T The New Hyperbolic Models of Heterogeneous Environments %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 72-84 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a6/ %G ru %F VYURU_2013_6_1_a6
V. S. Surov; I. V. Berezansky. The New Hyperbolic Models of Heterogeneous Environments. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 1, pp. 72-84. http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a6/
[1] Surov V. S., “Reflection of the Air Shock Wave from the Foam Layer”, High Temperature, 38:1 (2000), 101–110
[2] Surov V. S., “Calculation of Shock Wave Propagation in Bubbly Liquids”, Technical Physics. The Russian J. of Applied Physics, 68:11 (1998), 12–19
[3] Surov V. S., “Localization of Contact Surfaces in Multifluid Hydrodynamics”, J. of Engineering Physics and Thermophysics, 83:3 (2010), 518–527
[4] Surov V. S., “Single Velocity Model of Heterogeneous Media with Hyperbolic Adiabatic Core”, Computational Mathematics and Mathematical Physics, 48:6 (2008), 1111–1125 | MR | Zbl
[5] J. Wackers, B. Koren, “A fully conservative model for compressible two-fluid flow”, J. Numer. Meth. Fluids, 47 (2005), 1337–343 | DOI | MR
[6] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, J. Comput. Phys., 202 (2005), 664–698 | DOI | MR | Zbl
[7] J. J. Kreeft, B. Koren, “A new formulation of Kapila's five-equation model for compressible two-fluid flow, and its numerical treatment”, J. Comput. Phys., 229 (2010), 6220–6242 | DOI | MR | Zbl
[8] C. Cattaneo, “Sur une forme de l'equation de la chaleur elinant le paradoxe d'une propagation instantance”, C. R. Acad. Sci., 247 (1958), 431–432 | MR
[9] W. Dai, H. Wang, P. M. Jordan, “A mathematical model for skin burn injury induced by radiation heating”, Int. J. Heat and Mass Transfer, 51 (2008), 5497–5510 | DOI | Zbl
[10] Surov V. S., “Hyperbolic Model Single-Velocity Multi-Component Heat Conductive Medium”, High Temperature, 47:6 (2009), 905–913
[11] Samarskiy A. A., Popov U. P., Difference Methods for Solving Problems of Gas Dynamics, Nauka, M., 1980 (in Rusian) | MR
[12] Lodge A. S., Elastic Fluids, Nauka, M., 1969 (in Rusian)
[13] Surov V. S., “Hyperbolic Model Single Velocity Heterogeneous Environment”, J. of Engineering Physics and Thermophysics, 85:3 (2012), 495–502
[14] W. Kaminski, “Hyperbolic heat conduction equation for materials with a non-homogeneous inner structure”, Trans. of the ASME. J. of Heat Transfer, 112 (1990), 555 | DOI