Propagation of Weak Signals Through Continua
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 1, pp. 43-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a method of determining the velocity of weak signals in different media — ideal, non-ideal (nonzero stress deviator), and multi-component. As for the ideal media, the place Laplace's formula for sound velocity $$ C^{2} =\left(\frac{\partial P}{\partial \rho } \right)_{S} $$has long been such a widely used expression that it is understood as a definition of sound velocity. It is shown here that the formula is not a definition, but corollary from the consideration of mass, momentum and energy conservation laws in case of small perturbations in a medium described by an arbitrary equation of state. A similar consideration for an elastic isotropic medium gives expressions for longitudinal and transverse perturbation velocities dependent on the properties of solids. These relationships are studied rather well in the theory of elasticity though some papers on continuum mechanics provide somewhat different formulas for longitudinal and transverse perturbation velocities versus hydrodynamic sound velocity. Their consideration here was caused by the need to demonstrate universality of the method. Finally, for multi-component media, an equation for sound velocity is provided; it is principally different from what is widely used. The new equation is validated. It expresses sound velocity in a mixture versus sound velocities and concentrations of its components.
Keywords: mathematical model, sound velocity, ideal medium, mixture, elasticity, equation of state.
Mots-clés : concentration
@article{VYURU_2013_6_1_a4,
     author = {V. F. Kuropatenko},
     title = {Propagation of {Weak} {Signals} {Through} {Continua}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {43--55},
     year = {2013},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a4/}
}
TY  - JOUR
AU  - V. F. Kuropatenko
TI  - Propagation of Weak Signals Through Continua
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2013
SP  - 43
EP  - 55
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a4/
LA  - ru
ID  - VYURU_2013_6_1_a4
ER  - 
%0 Journal Article
%A V. F. Kuropatenko
%T Propagation of Weak Signals Through Continua
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2013
%P 43-55
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a4/
%G ru
%F VYURU_2013_6_1_a4
V. F. Kuropatenko. Propagation of Weak Signals Through Continua. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a4/

[1] Loytzyansky L. G., Fluid Mechanics, Tekhteorlit, M., 1957, 784 pp. (in Russian)

[2] Kuropatenko V. F., Glushak B. L., Novikov S. A., Strength of Materials under Dynamic Loads, Nauka, Novosibirsk, 1992, 294 pp. (in Russian) | MR

[3] Bezukhov N. I., Foundations of Elasticity, Plasticity and Creep Theory, Vysshaya shkola, M., 1988, 512 pp. (in Russian)

[4] Kuropatenko V. F., “New Models of Continuum Mechanics”, Engineering Physics J., 84:1 (2011), 74–92

[5] Kuropatenko V. F., “Momentum and Energy Exchange in Non-Equilibrium Multi-Component Media”, Applied Mechanical and Engineering Physics J., 46:1 (2005), 7–15 | Zbl

[6] A. B. Wood, Textbook of Sound, Bell Ltd, London, 1941

[7] Loytzyansky L. G., Fluid Mechanics, Nauka, M., 1973, 640 pp. (in Russian) | MR

[8] Kutateladze S. S., Heat Exchange and Waves in Fluid Systems, Nauka, Novosibirsk, 1984, 301 pp. (in Russian)

[9] Loboyko B. G., Dikov O. Y., Smirnov E. B., Explosion Hydrodynamics Problem Book, RFNC-VNIITF, Snezhinsk, 2006, 249 pp. (in Russian)

[10] Kuropatenko V. F., Kovalenko G. V., Kuznetsova V. I., Mikhaylova G. I., Sapozhnikova G. N., ““Wave” Code and Inhomogeneous Difference Method for Simulating Non-Equilibrium Compressible Continuum Flows”, Problems in Nuclear Science and Engineering Journal, Series: Mathematical Modeling of Physical Processes, 1989, no. 2, 9–17 (in Russian)