@article{VYURU_2013_6_1_a10,
author = {E. E. Ivanko},
title = {Dynamic {Programming} {Method} in {Bottleneck} {Tasks} {Distribution} {Problem} with {Equal} {Agents}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
pages = {124--133},
year = {2013},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a10/}
}
TY - JOUR AU - E. E. Ivanko TI - Dynamic Programming Method in Bottleneck Tasks Distribution Problem with Equal Agents JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie PY - 2013 SP - 124 EP - 133 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a10/ LA - ru ID - VYURU_2013_6_1_a10 ER -
%0 Journal Article %A E. E. Ivanko %T Dynamic Programming Method in Bottleneck Tasks Distribution Problem with Equal Agents %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie %D 2013 %P 124-133 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a10/ %G ru %F VYURU_2013_6_1_a10
E. E. Ivanko. Dynamic Programming Method in Bottleneck Tasks Distribution Problem with Equal Agents. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, Tome 6 (2013) no. 1, pp. 124-133. http://geodesic.mathdoc.fr/item/VYURU_2013_6_1_a10/
[1] Bellman R., Dynamic Programming, M., 1960, 400 pp. | MR
[2] Chentsov A. G., Extreme Problems of Routing and Tasks Distribution: Theory, M., 2007, 240 pp.
[3] M. Held, R. M. Karp, “A Dynamic Programming Approach to Sequencing Problems”, J. of the Society for Industrial and Applied Mathematics, 10:1 (1962), 196–210 | DOI | MR | Zbl
[4] R. M. Karp, “Dynamic programming meets the principle of inclusion and exclusion”, Oper. Res. Lett., 1:2 (1982), 49–51 | DOI | MR | Zbl
[5] Ivanko E. E., “Stability Criterion for the Optimal Route in Traveling Salesman Problem in Case of the One City Addition”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanica. Kompyuternie nauki, 2011, no. 1, 58–66 | Zbl
[6] Ivanko E. E., “Sufficient conditions of stability in Traveling Salesman Problem”, Trudi Instituta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 155–168
[7] Chentsov P. A., Chentsov A. G., Ivanko E. E., “On One Approach to Solving Traveling Salesman Problem with Several Performers”, J. of Computer and Systems Sciences International, 49:4 (2010), 570–578 | DOI | MR | Zbl
[8] Korotaeva L. N., Nazarov E. M., Chentsov A. G., “On one variant of Assignment Problem”, Computational Mathematics and Mathematical Physics, 33:4 (1993), 483–494 | MR | Zbl
[9] Chentsov P. A., Chentsov A. G., “To the Problem of Finite Set Partition Construction Based on Dynamic Programming”, Automation and Remote Control, 2000, no. 4, 129–142 | MR | Zbl
[10] Alekseev O. G., Complex Application of Discrete Optimization Methods, M., 1986, 247 pp. | MR
[11] G. Gutin, A. Punnen, The Traveling Salesman Problem and Its Variations, Springer, Berlin, 2002, 850 pp. | MR