The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 83-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is a continuation of the work, which accordance with development numerical noniterations method, allowing to find meanings of first eigenfunctions perturbed self-adjoin operators in the nodes of the sampling. Difficulty of the using method RT without direct decision of the systems of the nonlinear equations connected with expression of meanings of eigenfunctions of perturbed discrete operators from product the eigenfunction of the perturbed operator on its associate. In this work is offered computing efficient algorithm, allowing avoid this difficulty. The designed methods was checked on example of the spectral problem of the finding of meanings of eigenfunctions of perturbed Laplas's operator. From result of the calculation is seen that found meanings of eigenfunctions well agree with result, got by well-known methods by A. N. Krylov and A. M. Danilevskiy.
Keywords: eigenvalues, eigenfunctions, «weighted» corrections of the perturbation theory, self-adjoin operators.
@article{VYURU_2012_14_a7,
     author = {S. I. Kadchenko and S. N. Kakushkin},
     title = {The {Algorithm} of {Finding} of {Meanings} of {Eigenfunctions} of {Perturbed} {Self-Adjoin} {Operators} {Via} {Method} of {Regularized} {Traces}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {83--88},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a7/}
}
TY  - JOUR
AU  - S. I. Kadchenko
AU  - S. N. Kakushkin
TI  - The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 83
EP  - 88
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a7/
LA  - ru
ID  - VYURU_2012_14_a7
ER  - 
%0 Journal Article
%A S. I. Kadchenko
%A S. N. Kakushkin
%T The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 83-88
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a7/
%G ru
%F VYURU_2012_14_a7
S. I. Kadchenko; S. N. Kakushkin. The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 83-88. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a7/

[1] Sviridyuk G. A., Bayazitova A. A., “About Direct and Inverse Problems for the Equations of Hoff on the Graph”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2009, no. 1 (18), 6–17 | DOI

[2] Sviridyuk G. A., Zagrebina S. A., Pivovarova P. O., “Stability of the Hoff's Equations on the Column”, The Bulletin of the Samara State Engineering University, Series of Physical and Mathematical Sciences, 2010, no. 1 (15), 6–15 | DOI

[3] Kozhanov A. I., “Linear Inverse Problems for a Class of Degenerate Equations of Sobolev Type”, Bulletin of South Ural State University. Series «Mathematical Modelling, Programming Computer Software», 2012, no. 5 (264), issue 11, 33–45 (in Russian)

[4] Kadchenko S. I., Kakushkin S. N., “Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding”, Bulletin of South Ural State University. Series «Mathematical Modelling, Programming Computer Software», 2012, no. 5 (264), issue 11, 25–33 (in Russian)

[5] Kadchenko S. I., Ryazanova L. S., “The Numerical Method of Finding Eigenvalues of the Discrete Semi Bounded From Below Operator”, Bulletin of South Ural State University. Series «Mathematical Modelling, Programming Computer Software», 2011, no. 17 (234), issue 8, 46–51 (in Russian) | Zbl