Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sobolev type equations theory experiences an epoch of blossoming. The majority of researches is devoted to the determined equations and systems. However in natural experiments there are the mathematical models containing accidental indignation, for example, white noise. Therefore recently even more often there arise the researches devoted to the stochastic differential equations. In the given work the Boussinesq–Lòve model with additive white noise is considered within the Sobolev type equations theory. At studying the methods and results of theory of Sobolev type equations with relatively $p$-bounded operators were very useful. As the model is presented by the degenerate equation of mathematical physics, so it is difficult to apply existing nowadays Ito–Stratonovich–Skorokhod approaches. We use already well proved at the investigation of Sobolev type equations the phase space method consisting in a reduction of singular equation to regular one, defined on some subspace of initial space. In the first part of article some facts of $(A,p)$-bounded operators are collected. In the second — the Cauchy problem for the stochastic Sobolev type equation of high order is investigated. As an example the stochastic Boussinesq–Lòve model is considered.
Mots-clés : Sobolev type equation
Keywords: propagator, white noise, Wiener process.
@article{VYURU_2012_14_a6,
     author = {A. A. Zamyshlyaeva},
     title = {Stochastic {Incomplete} {Linear} {Sobolev} {Type} {High-Ordered} {Equations} with {Additive} {White} {Noise}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matemati\v{c}eskoe modelirovanie i programmirovanie},
     pages = {73--82},
     year = {2012},
     number = {14},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURU_2012_14_a6/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
TI  - Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
PY  - 2012
SP  - 73
EP  - 82
IS  - 14
UR  - http://geodesic.mathdoc.fr/item/VYURU_2012_14_a6/
LA  - ru
ID  - VYURU_2012_14_a6
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%T Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie
%D 2012
%P 73-82
%N 14
%U http://geodesic.mathdoc.fr/item/VYURU_2012_14_a6/
%G ru
%F VYURU_2012_14_a6
A. A. Zamyshlyaeva. Stochastic Incomplete Linear Sobolev Type High-Ordered Equations with Additive White Noise. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematičeskoe modelirovanie i programmirovanie, no. 14 (2012), pp. 73-82. http://geodesic.mathdoc.fr/item/VYURU_2012_14_a6/

[1] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest order derivative, Marcel Dekker, Inc., N.Y.–Basel–Hong Kong, 2003 | MR | Zbl

[2] R. E. Showalter, Hilbert space methods for partial differential equations, Pitman, London–San Francisco–Melbourne, 1977 | MR | Zbl

[3] A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, Inc., N. Y.–Basel–Hong Kong, 1999 | MR | Zbl

[4] N. Sidorov, B. Loginov, A. Sinithyn, M. Falaleev, Lyapunov–Schmidt methods in nonlinear analysis and applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 548 pp. | MR | Zbl

[5] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003 | MR | Zbl

[6] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, Series in nonlinear analisys and applications, 15, De Gruyter, 2011 | MR | Zbl

[7] Kozhanov A. I., Boundary problems for odd ordered equations of mathematical physics, NGU, Novosibirsk, 1990 | MR

[8] Sviridyuk G. A., Apetova T. V., “The Phase Spaces of Linear Dinamic Sobolev Type Equations”, DAN, 330:6 (1993), 696–699 (in Russian) | MR | Zbl

[9] Sviridyuk G. A., Vakarina O. V., “Linear Sobolev Type Equations of Higher Order”, DAN, 393:3 (1998), 308–310 (in Russian) | MR

[10] Sviridyuk G. A., Zamyshlyaeva A. A., “The Phase Spaces of a Class of Linear Higher-order Sobolev Type Equations”, Differential Equations, 42:2 (2006), 269–278 | MR | Zbl

[11] S. Wang, G. Chen, “Small amplitude solutions of the generalized IMBq equation”, Mathematical Analysis and Application, 274 (2002), 846–866 | DOI | MR | Zbl

[12] Uizem G., Linear and Nonlinear Waves, Mir, M., 1977 | MR

[13] Landau L. D., Lifshits E. M., Theoretical Phisics, v. VII, Elasticity Theory, Nauka, M., 1987 (in Russian) | MR | Zbl

[14] Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.-Y., 2011 | MR | Zbl

[15] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations. II: Solutions In Spaces Of Abstract Stochastic Distributions”, J. of Mathematical Sciences, 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[16] Shestakov A. L., Sviridyuk G. A., “On a New Conception of White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 287–288 (in Russian)

[17] Zagrebina S. A., Soldatova E. A., “The Barenblatt–Zheltova–Kochina Equation with White Noise”, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19:2 (2012), 252–254 (in Russian)

[18] M. Kovács, S. Larsson, “Introduction to stochastic partial differential equations”, Proceedings of «New Directions in the Mathematical and Computer Sciences» (National Universities Commission, Abuja, Nigeria, October 8–12, 2007), Publications of the ICMCS, 4, 2008, 159–232 | Zbl

[19] Sviridyuk G. A., Zagrebina S. A., “The Showalter–Sidorov Problem as a Phenomena of the Sobolev type Equations”, Journal «News of Irkutsk State University». Series «Mathematics», 3:1 (2010), 51–72 (in Russian) | MR